

MODEL **EZV**

BACKLASH FREE LINE SHAFTS

EZV / 20 / 1200 / A / 24 / 19 / XX Model Series Minimum length of selected range Type Elastomer insert Bore Ø D1 H7 Bore Ø D2 H7 Non standard e.g. finely balanced	Ordering example									
Model Series Minimum length of selected range Type Elastomer insert Bore Ø D1 H7 Bore Ø D2 H7 Non standard e.g. finely balanced	EZV / 20 / 1200 / A / 24 / 19 / XX									
Bore Ø D2 H7 Non standard e g, finelv balanced	Model Series Minimum length of selected range Type Elastomer insert Boro (0 D1 H7									
Non standard e.g. finely balanced	Bore Ø D2 H7									
	Non standard e.g. finely balanced									

All data is subject to change without notice.

Assembly instructions

After loosening the clamping screws E2, slide and / or rotate the tube sections to the desired positions. Once positioned, tighten the screws to the appropriate tightening torque, whereby guaran-

teeing a high level of concentricity for the line shaft assembly.

variable length

Properties:

- lateral mounting with split clamping hubs
- lengths up to 4 meters
- adjustable in length and rotational orientation
- Iow moment of inertia
- vibration damping
- press fit designs
- backlash free

Material:

Clamping hub: high strength aluminum. Elastomer insert: precision molded, wear resistant, thermally stable polymer. Intermediate tubes: precision extruded aluminum tube, steel or composite tube are upon request available.

Design:

Two split clamping hubs on each end are concentrically machined with curved jaws. Both coupling bodies are solidly joined to the tubes with a high level of concentricity. Loosening the intermediate clamp allows for a variation of length and rotational orientation. Elastomer inserts are available in type A or B.

Speed:

To control the critical speed please advise the application speed when ordering or inquiring about EZ line shafts.

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 \mbox{mm}

R+W calculation program

With specially developed sofware R+W can calculate the critical speeds for each application.

Results of a calculation are shown below.

The critical speed can be altered by changing the tube material and/or other parameters.

Critical speed	n _{kb}	=	rpm
Maximum speed	n _B	=	rpm
Torsional deflection	φ	=	Degree-Min-Sec
Total stiffness EZ 2	C_{Tdyn}^{EZ}	=	Nm/rad
Permissible lateral misalignment	ΔKr	=	mm
Weight of total axis	m	=	kg
Mass moment of inertia	J	=	kgm²
			-

MODEL EZV

BACKLASH FREE LINE SHAFTS

		Series													
IVIOAEI EZV			10		20		60		150		300		450		
Type (Elastomer insert)			А	В	А	В	А	В	А	В	А	В	А	В	
Rated torque	(Nm)	T _{KN}	12.5	16	17	21	60	75	160	200	325	405	530	660	
Max. torque*	(Nm)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1200	
Range of possible minimum lengths (collapsed)	(mm)	A _{min}	150 to 2 055		200 to 2075		250 to 2 095		300 to 2115		350 to 2 130		400 to 2150		
Range of possible maximum lengths (extended)	(mm)	A _{max}	190 to 4000		250 to 4000		310 to 4000		370 to 4000		440 to 4000		500 to 4000		
Measurement	(mm)	X1+X2	115		156		197		240		280		312		
Outside diameter of clamping hub	(mm)	B ₁	32		42		56		66.5		82		102		
Outside diameter of tube	(mm)	B ₂	28		35		50		60		80		90		
Outside diameter of center hub	(mm)	B ₃	41.5		47		67		77		102		115		
Outside diameter with screw head	(mm)	Bs	32		44.5		57		68		85		105		
Fit length	(mm)	С	20		25		40		47		55		65		
Inside diameter range H7	(mm)	D _{1/2}	5 to 16		8 to 25		14 to 32		19 to 35		19 to 45		24 to 60		
Clamping screw (ISO 4762)			M4		M5		M6		M8		M10		M12		
Tightening torque of the clamping screw	(Nm)	E ₁	4		8		15		35		70		120		
Clamping screw (ISO 4762)		E	M4		M4		M5		M6		M8		M10		
Tightening torque of the clamping scre	ew(Nm)	⊑ ₂	4		4.5		8		18		35		70		
Distance between centers	(mm)	F ₁	10.5		15.5		21		24		29		38		
Distance between centers	(mm)	F ₂	15		18		26		31		41		45		
Distance	(mm)	G	7.5		8.5		15		17.5		20		25		
Length of the couplings	(mm)	Н	34		46		63		73		86		99		
Distance between centers	(mm)	Ν	26		33		49		57		67		78		
Mounting length	(mm)	0	16.6		18.6		32		37		42		52		
Moment of inertia coupling half (10	³ kgm ²)	J_1/J_2	0.01		0.02		0.15		0.21		1.02		2.3		
Inertia of tube per meter (10-3	kgm²)	J ₃	0.075		0.	0.183		0.66		1.18		2.48		10.6	
Combined dynamic torsional stiffness of the inserts (Nn	n/rad)	C _{Tdyn} E	270	825	1,270	2,220	3,970	5,950	6,700	14,650	11,850	20,200	27,700	40,600	
Torsional stiffness of tube per meter (Nn	n/rad)	C_T^{ZWR}	321		1,530		6,632		11,810		20,230		65,340		

Max. transmittable torque of the clamping hub depends on the bore diameter; see EKH (page 8)

1 Nm = 8.85 in lbs

Function

The collapsed and extended overall length values are related, becoming increasingly flexible with greater length. Length ranges can be calculated using the two formulas shown at left. For information regarding selection according to axial, angular and lateral misalignment, as well as torsional stiffness of the EZV, refer to page 15.