
ACSPL+

Programmer's Guide
September 2020

Document Revision: 3.02

ACSPL+

Release Date: September 2020

COPYRIGHT

© ACS Motion Control Ltd., 2020. All rights reserved.

Changes are periodically made to the information in this document. Changes are published as release notes and later
incorporated into revisions of this document.

No part of this document may be reproduced in any form without prior written permission from ACS Motion Control.

TRADEMARKS

ACS Motion Control, SPiiPlus, PEG, MARK, ServoBoost, NetworkBoost and NanoPWNare trademarks of ACS Motion Control Ltd.

EtherCAT is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Any other companies and product names mentioned herein may be the trademarks of their respective owners.

www.acsmotioncontrol.com

support@acsmotioncontrol.com

sales@acsmotioncontrol.com

NOTICE

The information in this document is deemed to be correct at the time of publishing. ACS Motion Control reserves the right to
change specifications without notice. ACS Motion Control is not responsible for incidental, consequential, or special damages of
any kind in connection with using this document.

2Version 3.02

ACSPL+ Programmer's Guide

http://www.acsmotioncontrol.com/
mailto:support@acsmotioncontrol.com
mailto:sales@acsmotioncontrol.com

Revision History
Date Revision Description

September
2020

3.02 Remove reference to obsolete SPiiPlus PCI device

July 2020 3.01 Structures and Functions

June 2020 3.00 Enhanced input shaping

July 2018 2.60

Added XRMSD, XRMSM, XRMSTD, and XRMSTM

Added gantry mode commutation support

Updated the following BSEG motions commands:

BSEG, ARC1, ARC2, Line

December 2017 2.50 Added BSEG

June 2017 2.40 Updated #ETHERCAT, COEWRITE. COEREAD

October 2016 2.30.01
Changed switch to /f for end_velocity argument in
XSEG

August 2016 2.30

Updated for SPiiPlus ADK Suite v2.30

Updated Position Event Generation (PEG) and MARK
section

Removed ASSIGNFINS section

Removed PLCFLG

November
2015

2.29.10 XSEG updated for new features.

August 2015 2.29.04 XSEG updated for new features.

March 2015 2.29.01 XSEG updated for new features.

3Version 3.02

ACSPL+ Programmer's Guide

Conventions Used in this Guide
Text Formats

Format Description

Bold Names of GUI objects or commands

BOLD + UPPERCASE ACSPL+ variables and commands

Monospace + grey
background

Code example

Italic Names of other documents

Blue Hyperlink

[] In commands indicates optional item(s)

| In commands indicates either/or items

Flagged Text

Note - includes additional information or programming tips.

Caution - describes a condition that may result in damage to equipment.

Warning - describes a condition that may result in serious bodily injury or death.

Model - highlights a specification, procedure, condition, or statement that
depends on the product model

Advanced - indicates a topic for advanced users.

4Version 3.02

ACSPL+ Programmer's Guide

Related Documents
Documents listed in the following table provide additional information related to this document.

The most updated version of the documents can be downloaded by authorized users from
www.acsmotioncontrol.com/downloads.

Online versions for all ACS software manuals are available to authorized users at ACS Motion Control
Knowledge Center.

Document Description

SPiiPlus Command &
Variable Reference
Guide

Describes all of the variables and commands available in the
ACSPL+ programming language.

SPiiPlus MMI Application
Studio User Guide

Explains how to use the SPiiPlus MMI Application Studio and
associated monitoring tools.

SPiiPlus C Library
Reference Programmer
Guide

C++ and Visual Basic® libraries for host PC applications. This guide
is applicable for all the SPiiPlus motion control products.

SPiiPlus COM Library
Programmer's Guides

COM Methods, Properties, and Events for Communication with
the Controller.

SPiiPlus .NET Library
Programmer's Guide

.NET Methods, Properties, and Events for Communication with
the Controller.

SPiiPlus Utilities User
Guide

A guide for using the SPiiPlus User Mode Driver (UMD) for setting
up communication with the SPiiPlus motion controller

SPiiPlusNT-DC
Hardware Guide

Technical description of the SPiiPlusNT-DC product line.

PDMNT Product Guide Technical description of the PDMNT Universal Drive Module

SDMNT Product Guide Technical description of the SDMNT Universal Drive Module

UDMNT Installation
Guide

Technical description of the UDMNT Universal Drive Module

MC4U Product Guide
Technical description of the MC4U Control Module integrated
motion control product line.

HSSI Expansion
Modules Guide

High-Speed Synchronous Serial Interface (HSSI) for expanded I/O,
distributed axes, and nonstandard devices.

PEG and MARK
Operations

Provides details on using the PEG commands in SPiiPlus systems.

5Version 3.02

ACSPL+ Programmer's Guide

http://www.acsmotioncontrol.com/downloads
https://www.acsmotioncontrol.com/knowledge-center
https://www.acsmotioncontrol.com/knowledge-center

Table of Contents

1. Introduction 25

1.1 ACSPL+ Programming Language 25

2. SPiiPlus Architecture 26

2.1 Hardware Structure 26

2.1.1 Firmware 27

2.1.2 Controller Cycle and Servo Tick 27

2.1.3 Realtime and Background Tasks 27

2.2 User Application 29

2.2.1 Firmware, User Application and Tools 29

2.2.2 User Application Components 29

2.2.3 User Applications Categories 30

2.2.4 SPiiPlus MMI Application Studio 30

2.2.5 File Extensions Used in SPiiPlus MMI Application Studio 32

2.3 Programming Resources 32

2.3.1 Commands 32

2.3.2 Program Buffers 33

2.3.2.1 ACSPL+ Buffers Compilation Behavior 34

2.3.3 Declaration Buffer (D-Buffer) 34

2.3.3.1 Defining Global Objects in D-Buffer 34

2.3.3.2 D-Buffer Default Contents 34

2.3.4 Command Execution 35

2.3.4.1 Terminal Commands 35

2.3.4.2 ACSPL+ Commands 35

2.3.5 ACSPL+ Standard Variables 36

2.3.6 User-Defined Variables 36

2.3.7 Nonvolatile Memory and Power Up Process 36

2.4 Executing ACSPL+ Programs 37

2.4.1 Program Buffers 37

2.4.2 Execution of a Single Program 37

2.4.3 Concurrent Execution 38

2.4.4 Immediate Execution 38

2.4.5 Immediate Execution vs. Stored Program 39

6Version 3.02

ACSPL+ Programmer's Guide

2.4.6 Autoroutine Execution 39

2.4.7 Synchronization and Mutual Exclusion 39

2.4.7.1 Mutual Exclusion 40

2.4.7.2 Synchronization 40

2.4.7.3 Execution Rate 41

3. ACSPL+ Overview 42

3.1 ACSPL+ Syntax 42

3.1.1 Commands, Lines, and Command Aggregates 42

3.1.2 BLOCK..END Control Structure 42

3.1.3 ACSPL+ Reserved Words 43

3.1.4 Names: Variable and Label 43

3.1.5 Case Sensitivity 43

3.1.6 Axis Designations 43

3.1.7 Comments 44

3.2 Variables 44

3.2.1 Variable Name 44

3.2.2 Variable Class: ACSPL+ or User 44

3.2.3 Variable Scope 45

3.2.3.1 Global Variable Scope 45

3.2.3.2 Local Variable Scope 45

3.2.4 Variable Lifetime 46

3.2.5 Variable Accessibility 46

3.2.6 Variable Type: Integer and Real 47

3.2.7 Variable Size 47

3.2.8 Variable Value 48

3.3 Variable Declaration 48

3.3.1 Declaration of Global Variables 49

3.3.2 Persistent Global Variables 49

3.4 Arrays and Indexing 50

3.4.1 Scalars and Arrays 50

3.4.2 ACSPL+ Array Variables 50

3.4.3 Explicit Indexing 51

3.4.4 Postfix Indexing of Standard Arrays 51

3.4.5 Axis Indexing 52

7Version 3.02

ACSPL+ Programmer's Guide

3.4.6 User-Defined Axis Names 52

3.4.6.1 Axis Name as Symbolic Constant 52

3.4.6.2 Axis Name in Indexing 53

3.4.6.3 Axis Specification in Commands 53

3.4.7 Array Processing Functions 54

3.5 ACSPL+ Composite Data Structures 54

3.5.1 Introduction 54

3.5.2 STRUCT Type Definition 54

3.5.3 Fields 54

3.5.4 STRUCT type variable definition and use 55

3.5.4.1 Variable definition 55

3.5.4.2 Variable initialization 56

3.5.4.3 Expressions Using STRUCTs 56

3.5.5 STRUCT Functions 56

3.5.5.1 Function Definition 56

3.5.5.2 STRUCT Function Parameters 57

3.5.5.3 Function Variables Definition 57

3.6 Using Variables 57

3.6.1 Querying Variables 57

3.6.2 Variables as Operands in Expressions 57

3.6.3 Variables as Arguments in Command or Function 58

3.6.4 Variables in ACSPL+ Terminal Commands 58

3.6.5 Accessing Variables by Tags 59

3.6.5.1 Variable Tags 59

3.6.5.2 GETVAR and SETVAR Functions 59

3.7 ACSPL+ Functions 60

3.8 ACSPL + User-Defined Functions with Parameters 60

3.8.1 Introduction 60

3.8.2 Function definition 60

3.8.2.1 Function Signature 60

3.8.2.2 FASTCALL Functions 61

3.8.2.3 Function visibility scope 61

3.8.2.3.1 Local function 62

3.8.2.3.2 Global function 62

8Version 3.02

ACSPL+ Programmer's Guide

3.8.2.3.3 Function Declaration 62

3.8.2.4 Function Code 63

3.8.3 Function Parameters 63

3.8.3.1 Value Types 63

3.8.3.2 Reference types 64

3.8.3.3 Composite Data Type Parameters 64

3.8.3.4 Array Type Parameters 64

3.8.3.4.1 Single Dimension Array 64

3.8.3.4.2 Two Dimensional Array 65

3.8.4 Variable Definition 66

3.8.5 Return value 67

3.8.6 DISP command 67

3.8.7 Stack Memory 67

3.8.8 Function Execution Time 68

3.8.9 FILL function 68

3.9 Expressions 68

3.9.1 General 68

3.9.2 Calculation Order 69

3.9.3 Expression Type 69

3.9.4 Operands 70

3.9.4.1 Arithmetical Operators 71

3.9.4.2 Compare Operators 72

3.9.4.3 Bitwise and Logical Operators 72

3.9.4.4 Unary Operators 73

3.9.4.5 Bit Selection Operator (Dot) 74

3.9.5 Character Constants 74

3.10 ACSPL+ Commands 74

3.10.1 Assignment Command 74

3.10.1.1 ACSPL+ Variable Assignment 75

3.10.1.2 User Variable Assignment 75

3.10.1.3 Bit Assignment 76

3.10.1.4 Type Conversion 76

3.10.2 Synchronization Commands 77

3.10.2.1 WAIT Command 77

9Version 3.02

ACSPL+ Programmer's Guide

3.10.2.2 TILL Command 78

3.10.3 Autoroutines 79

3.10.3.1 ON Command 79

3.10.3.2 Autoroutine Body and Execution 80

3.10.3.3 Autoroutine and the Host Buffer Interactions 80

3.10.3.4 Examples 81

3.10.4 Program Management Commands 83

3.10.4.1 START Command 83

3.10.4.2 STOP and STOPALL Commands 83

3.10.4.3 PAUSE and RESUME Commands 84

3.10.4.4 ENABLEON and DISABLEON Commands 85

4. ACSPL+ Motion Programming 87

4.1 Axis/Motor Management Commands 87

4.1.1 ENABLE & DISABLE Commands 87

4.1.2 COMMUT Command 88

4.1.3 KILL and KILLALL Commands 90

4.1.4 FCLEAR Command 92

4.1.5 SET Command 92

4.1.6 GROUP, SPLIT & SPLITALL Commands 94

4.1.7 GO Command 96

4.1.8 HALT Command 97

4.1.9 BREAK Command 97

4.1.10 IMM Command 98

4.2 Point-to-Point Motion 99

4.2.1 PTP Command 99

4.2.2 MPTP, POINT, MPOINT, and ENDS Commands 101

4.2.2.1 MPTP Command 102

4.2.2.2 POINT Command 103

4.2.2.3 MPOINT Command 104

4.2.3 The GRTIME Variable 106

4.2.4 Modulo Axis 107

4.2.5 Motion Boost 108

4.2.5.1 20 kHz Motion 108

4.2.5.2 BPTP 110

10Version 3.02

ACSPL+ Programmer's Guide

4.2.5.3 BPTPCalc 113

4.3 JOG Command 113

4.4 TRACK Command 115

4.5 Segmented Motion 118

4.5.1 Understanding Slaved Segmented Motion 118

4.5.2 MSEG, LINE, ARC1, ARC2, STOPPER Commands 119

4.5.3 PROJECTION Command 122

4.5.4 Arguments as Expression 123

4.5.5 STOPPER Command 124

4.5.6 Cyclic Motion 125

4.5.7 Slaved Motion at Extreme Points 125

4.6 Extended Segmented Motion (XSEG) 126

4.6.1 Corner Processing 126

4.6.1.1 Corner Detection 126

4.6.1.2 Supported Options 126

4.6.2 Automatic Corner Processing 128

4.6.3 Enhanced automatic corner and curvature discontinuity points processing
(switch/y) 128

4.6.4 Velocity Control and Look-ahead Algorithm 129

4.6.5 Corners and Curvature Discontinuity Points 130

4.6.6 Dynamic Velocity Profile Generation 131

4.6.7 Controller Usage Considerations 132

4.6.8 Approaches for Adding Segments 132

4.6.8.1 Adding Segments In Advance 132

4.6.8.2 Adding Segments Only When Requested 133

4.6.9 Secondary Axes 133

4.6.9.1 Secondary Axes Functionality 133

4.6.9.2 Using Secondary Axes in XSEG 134

4.6.9.3 Secondary Axes in ARC1, ARC2, LINE 134

4.6.10 Supported Motion Parameters 134

4.6.11 Non Supported Motion Parameters 135

4.6.12 XSEG...ENDS 135

4.6.13 ARC1 141

4.6.14 ARC2 143

11Version 3.02

ACSPL+ Programmer's Guide

4.6.15 LINE 145

4.6.16 Using ARC1, ARC2 and LINE Switches 146

4.6.17 Examples 147

4.6.17.1 Simple Two Axes Example 147

4.6.17.2 Simple Four Axes Example 149

4.6.18 New AST Bits 150

4.6.19 The IMM Command 151

4.6.20 XSEGAMIN and XSEGAMAX 152

4.6.21 XSEGRMIN and XSEGRMAX 152

4.7 Blended Segmented Motion 153

4.7.1 Motion definition through time intervals 153

4.7.2 Motion blending 154

4.7.2.1 Motion blending in special cases 156

4.7.3 ACSPL+ interface 156

4.7.3.1 Supported motion parameters 156

4.7.3.2 Non-supported motion parameters 157

4.7.3.3 BSEG command 157

4.7.3.4 LINE 158

4.7.3.5 ARC1 158

4.7.3.6 ARC2 159

4.7.3.7 Suffixes with commands LINE, ARC1, ARC2 160

4.7.3.8 HALT execution 161

4.7.4 Two axes example 161

4.8 Master/Slave Motion 162

4.8.1 MASTER Command 162

4.8.2 SLAVE Command 163

4.8.2.1 Synchronization 164

4.8.2.2 Velocity Lock vs. Position Lock 164

4.8.2.3 Stalled Motion 165

4.9 PATH Command 166

4.10 Spline Motion 167

4.10.1 Spline Motion Theory 167

4.10.2 Main Definitions 167

4.10.3 PVSPLINE Command 168

12Version 3.02

ACSPL+ Programmer's Guide

4.10.3.1 POINT Command 169

4.10.3.2 MPOINT Command 170

4.10.4 Spline Motion Variables 171

4.11 Open-Loop Operation (Torque Control) 173

4.12 Step Velocity Profile (Non-Zero Minimal Velocity) 175

4.12.1 The NVEL Variable 175

4.12.2 Special NVEL Cases 175

4.12.2.1 Specified Velocity Less Than NVEL 175

4.12.2.2 Multi-Axis Motion 176

4.12.2.3 NVEL and Non-Default Connection 176

5. Inputs and Outputs 177

5.1 Digital Inputs and Outputs 177

5.1.1 Addressing Digital I/Os 177

5.1.2 Querying Digital I/Os 178

5.1.3 Assigning Outputs 178

5.1.4 Digital I/O in Conditional Commands 179

5.1.5 PLC Implementation 179

5.1.6 Digital I/O in Autoroutines 181

5.1.7 Using HSSI I/O Extension 181

5.1.8 SPI Communication 181

5.1.8.1 ACSPL+ Commands and Variables for SPI 181

5.1.8.1.1 SPICFG 181

5.1.8.1.2 SPIRXN 183

5.1.8.1.3 EXTIN 183

5.1.8.1.4 EXTOUT 183

5.2 Analog Inputs and Outputs 184

5.2.1 Addressing Analog I/Os 184

5.2.2 Assigning Analog Outputs 185

6. Fault Handling 187

6.1 Safety Control 187

6.1.1 Types of Malfunctions 187

6.1.2 How the Controller Detects Malfunctions 188

6.1.3 Faults 188

6.1.3.1 The FAULT Variable 188

13Version 3.02

ACSPL+ Programmer's Guide

6.1.3.2 The S_FAULT Variable 188

6.1.4 Controller Response 189

6.2 Safety Control Summaries 189

6.2.1 Summary of Faults and Default Responses 189

6.2.2 Summary of Safety Inputs 196

6.2.3 Summary of Safety-Related Variables 197

6.2.4 Integrity Control 198

6.2.4.1 Integrity Violation Fault 199

6.2.4.2 Integrity Report Command 199

6.2.5 Report of Realtime Usage Command 201

6.2.6 Application Protection 201

6.2.6.1 Protected Features 201

6.2.6.2 Enhanced Application Protection 202

6.2.6.3 CFG Variable 202

6.2.6.4 Protection of Variables 202

6.2.6.5 Protection of ACSPL+ Programs 203

6.2.6.6 Privileged Buffer 203

6.2.6.7 Communication Shutdown 204

6.2.7 Report Safety Configuration 204

6.3 Working with Faults 205

6.3.1 Addressing the Fault Bits 205

6.3.2 Querying Faults 207

6.3.3 Using the Fault Bits in if, while, till Commands 208

6.3.4 Creating Fault-Processing Autoroutines 208

6.3.5 Disabling Fault Processing 210

6.3.6 Defining the Active Level of Safety Input 211

6.3.7 Fault Processing Modes 212

6.4 Network Faults 213

6.4.1 Axis Network-Related Faults 213

6.4.2 Initialization Failure 214

6.4.3 Network Failure During Operation 214

6.4.4 SP Software Failure 214

6.5 Detailed Description of Faults 215

6.5.1 Limit Switches: #LL, #RL 215

14Version 3.02

ACSPL+ Programmer's Guide

6.5.2 Network Fault: #NT 216

6.5.3 Software Limit Switches: #SLL, #SRL 217

6.5.4 Non-Critical Position Error: #PE 218

6.5.5 Critical Position Error: #CPE 220

6.5.6 Encoder Error: #ENC, #ENC2 222

6.5.7 Encoder Not Connected: #ENCNC, #ENC2NC 222

6.5.8 Drive Alarm: #DRIVE 223

6.5.9 Motor Overheat: #HOT 224

6.5.10 Velocity Limit: #VL 225

6.5.11 Acceleration Limit: #AL 225

6.5.12 Current Limit: #CL 226

6.5.13 Servo Processor Alarm: #SP 227

6.5.14 HSSI Not Connected: #HSSINC 228

6.5.15 Emergency Stop: #ES 228

6.5.16 Program Error: #PROG 229

6.5.17 Memory Overflow: #MEM 230

6.5.18 Time Overuse: #TIME 231

6.5.19 Servo Interrupt: #INT 232

6.5.20 Component Failure Faults: #FAILURE 233

6.5.20.1 Safety Variables 233

6.5.20.2 Component Failure Fault Handling in ACSPL+ 234

6.6 Detailed Description of Safety Controls 234

6.6.1 Examining Fault Conditions - Flow Chart 235

6.6.2 Examining Motor Fault Conditions 236

6.6.3 Examining System Fault Conditions 236

6.7 Extended Fault Configuration 237

7. Connection to the Plant 239

7.1 General Diagram 239

7.2 User-Defined Units 240

7.3 Direct and Feedback Transform 241

7.4 Index and Mark Values 242

7.5 Safety Inputs 243

7.6 Digital Inputs/Outputs Repetitive 244

7.7 Analog Inputs/Outputs 244

15Version 3.02

ACSPL+ Programmer's Guide

7.8 High-Speed Synchronous Serial Interface 245

8. Advanced Features 246

8.1 Data Collection 246

8.1.1 DC Command 246

8.1.2 SPDC - High-Speed Data Collection 247

8.1.3 ACSPL+ Variables Involved in Data Collection 248

8.1.4 Understanding System Data Collection 249

8.1.5 Axis Data Collection 251

8.1.6 STOPDC Command 252

8.2 PEG Overview 253

8.2.1 PEG Modes and Operation 254

8.2.1.1 Incremental PEG Mode of Operation 255

8.2.1.1.1 Incremental PEG Commands 255

8.2.1.1.2 Running Incremental PEG 256

8.2.1.2 Random PEG Mode of Operation 257

8.2.1.2.1 Random PEG Commands 257

8.2.1.2.2 Running Random PEG 258

8.2.1.2.3 Time-Based PEG Support 258

8.2.1.2.4 Loading Random PEG Arrays 259

8.2.1.2.5 SPiiPlusCM / SPiiPlusSA / SPiiPlus3U PEG Compatibility 261

8.2.1.3 PEG Commands 261

8.2.1.3.1 PEG Output Mapping 262

8.2.1.3.2 ASSIGNPEG 263

8.2.1.3.3 ASSIGNPOUTS 272

8.2.1.3.4 STARTPEG 284

8.2.1.3.5 STOPPEG 285

8.2.1.3.6 PEG_I 286

8.2.1.3.7 PEG_R 288

8.2.1.3.8 ASSIGNMARK 293

8.2.1.4 ACSPL Plus Functions and Definitions 297

8.2.1.4.1 GETCONF 297

8.2.1.4.2 AST.#PEGREADY 299

8.3 Sin-Cos Encoder Multiplier Configuration 299

8.3.1 Sin-Cos Encoder Multiplier 299

16Version 3.02

ACSPL+ Programmer's Guide

8.3.1.1 Technical Data 299

8.3.1.2 Configuring the Sin-Cos Multiplier 300

8.4 Interrupts 300

8.4.1 Hardware Interrupts 300

8.4.2 Software Interrupts 301

8.4.3 Software Interrupt Tags 302

8.4.4 Interrupt Configuration Variables 303

8.4.4.1 IENA Variable 303

8.4.4.2 ISENA Variable 304

8.5 Dynamic Braking 305

8.6 Constant Current Mode 305

8.7 Hall Sensor Commutation 306

8.8 Communicating with the SPiiPlus C Library 307

8.8.1 Remote Connection 307

8.8.2 Callbacks in all Communication Channels 308

8.8.2.1 Timing 308

8.8.2.2 Software Interrupts 308

8.8.2.3 Hardware Interrupts 309

8.8.3 TCP/IP Port Assignment for Remote Connection 309

8.8.3.1 TCP/IP Port Assignmnet 309

8.8.3.2 Disabling Remote UMD Connections 310

8.8.3.3 UMD Log Types 310

8.8.3.4 Unloading the UMD from Memory 312

8.9 Communicating with Non-ACS Devices 312

8.9.1 Channel Configuration Report 312

8.9.2 Assigning COM Channel for Special Input 313

8.9.3 Setting Communication Parameters 314

8.9.4 Parity, Stop Bit 315

8.9.5 INP Function 315

8.9.6 String Handling Commands 316

8.9.6.1 DISP Command 316

8.9.6.2 SEND Command 319

8.9.6.3 Differences between Query Commands and the DISP/SEND Commands 320

8.9.6.4 STR Function 320

17Version 3.02

ACSPL+ Programmer's Guide

8.9.6.5 DSTR Function 321

8.10 TRIGGER Command 322

8.11 Dynamic TCP/IP Addressing 323

8.11.1 TCP/IP Variable 323

8.11.2 Using GETCONF/SETCONF to Access TCP/IP Address 323

8.11.3 Addressing Scenarios 324

8.12 Non-Default Connections 325

8.12.1 ROFFS Variable 325

8.12.2 DAPOS Variable 326

8.12.3 CONNECT Command 326

8.12.4 DEPENDS Command 329

8.12.5 MATCH Function 330

8.13 Input Shaping 331

8.13.1 INSHAPEON 331

8.13.2 INSHAPEOFF 333

8.13.3 AST 333

8.13.4 APOSFILT 336

8.13.5 Using the Convolve Web Site 336

8.13.6 Data Entry Dialog 337

8.14 DRA Algorithm 345

8.15 BI-Quad Filter 348

8.16 Feedback Routing 351

8.17 Voltage Mode 352

9. Generic EtherCAT Master 353

9.1 Stack Behavior 353

9.2 Interface Description 353

9.2.1 ACSPL+ Variables 353

9.2.1.1 ECST - EtherCAT State 353

9.2.1.2 ECERR 354

9.2.1.3 #ETHERCAT 354

9.3 EtherCAT Functions 355

9.3.1 Mapping Functions 355

9.3.1.1 ECIN 355

9.3.1.2 ECOUT 356

18Version 3.02

ACSPL+ Programmer's Guide

9.3.1.3 ECUNMAP 356

9.3.1.4 ECCLRREG 357

9.3.1.5 ECGETREG 357

9.3.1.6 ECGETSLAVES 359

9.3.1.7 ECUNMAPIN 359

9.3.1.8 ECUNMAPOUT 360

9.3.2 CoE Functions 360

9.3.2.1 COEWRITE 360

9.3.2.2 COEREAD 361

10. Servo Tuning 363

10.1 Stepper Closed-loop Position Correction 363

10.1.1 StepperClosedLoopFirmwareBased 363

10.1.2 StepperClosedLoopServoProcessor 363

11. Errors & Diagnostics 364

11.1 Error Codes 364

11.1.1 Error Code Ranges 364

11.2 Error Indication 365

11.2.1 Errors in Received Commands 365

11.2.2 Errors in ACSPL+ Programs 366

11.2.3 Motion Termination Codes 366

11.2.4 Motion Termination and Motor Disable Codes 367

11.2.5 Getting Extended Drive Fault Status 367

12. Application Examples 369

12.1 Encoder Error Compensation with Constant Step 369

12.2 Encoder Error Compensation with Arbitrary Step 369

12.3 Backlash Compensation 370

12.4 Compensation of Encoder Error and Backlash 370

12.5 Cam Motion 371

12.6 Joystick 371

12.7 XYZ Rotation 371

19Version 3.02

ACSPL+ Programmer's Guide

List Of Figures

Figure 2-1. SPiiPlus Controller Hardware Structure 26

Figure 2-2. Multiple SPs Connected via EtherCAT 27

Figure 2-3. The Internal Structure of the Controller Cycle 28

Figure 2-4. User Application Block Diagram 29

Figure 2-5. SPiiPlus MMI Application Studio Main Screen 31

Figure 2-6. Communication Terminal Window 33

Figure 4-1. GRTIME Behavior in PTP or TRACK Motion 107

Figure 4-2. Corner Processing - Exact Path Option 127

Figure 4-3. Corner Processing - Permitted Deviation, Permitted Radius and Corner Rounding
Options 127

Figure 4-4. Third-Order Velocity Profile 129

Figure 4-5. Primary Axes Motion 149

Figure 4-6. Secondary Axes Motion 150

Figure 4-7. Example of motion with segment commands 162

Figure 6-1. The Use of Limit Switches 215

Figure 6-2. Use of Variables in a Typical Motion Profile 219

Figure 6-3. 32-bit Error Data Number 234

Figure 6-4. Fault Examination Flow Chart 235

Figure 7-1. SPiiPlus-Plant Connections and Related Parameters 239

Figure 8-1. PEG Engines Output Mapping 262

Figure 8-2. Simultaneous Connection for Remote Support 308

Figure 8-3. UMD Log Settings - Dump on Request 311

Figure 8-4. UMD Log Settings - Continuous 312

Figure 8-5. Data Entry Dialog 338

Figure 8-6. Screen at the Conclusion of Calculation 339

Figure 8-7. Window Accessed by Download 340

Figure 8-8. Insensitivity Curve Illustration 342

Figure 8-9. Insensitivity Curve without Robust 344

Figure 8-10. Example 1 of Using DRA 346

Figure 8-11. Example 2 of using DRA (zoomed) 346

Figure 8-12. Example of Velocity Error 348

Figure 8-13. Bi-Quad Configured as a Notch Filter 349

20Version 3.02

ACSPL+ Programmer's Guide

Figure 8-14. Bi-Quad Configured as a 2nd Order Lead Filter 350

Figure 8-15. Bi-Quad Configured as a 2nd Order Lag Filter 350

Figure 8-16. Bi-Quad Configured as a 2nd Order Low Pass Filter 351

Figure 11-1. XYZ Rotation 372

21Version 3.02

ACSPL+ Programmer's Guide

List of Tables

Table 2-1. SPiiPlus MMI Application Studio Extensions 32

Table 3-1. Example of the possible index formats. 53

Table 3-2. Mathematical Operators 69

Table 4-1. Motor Modes 173

Table 6-1. Types of Malfuntions 187

Table 6-2. Faults and the Controller's Default Response 190

Table 6-3. Safety Inputs 197

Table 6-4. Safety Related Variables 197

Table 8-1. Minimum HW Revision that supports Position Events Generation (PEG)
Improvements 254

Table 8-2. Commands Associated with Incremental PEG 255

Table 8-3. Commands Associated with Random PEG 257

Table 8-4. Typical Times to Load PEG Engines for the products that support fast loading of
Random PEG arrays 259

Table 8-5. Typical Times to Load PEG Engines for the products that do not support fast
loading of Random PEG arrays 260

Table 8-6. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders
(Servo Processor 0) 264

Table 8-7. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders
(Servo Processor 1) 265

Table 8-8. SPiiPlus CMnt-x/UDMpm-x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-
x/UDMhv-x/UDMnt-x/UDMpa-x/UDMcb-x Mapping PEG Engines to Encoders (Servo
Processor 0) 266

Table 8-9. UDMlc-x/UDIlt-x/UDIhp-x/UDMmc-x/PDIcl-x/ Mapping PEG Engines to Encoders
(Servo Processor 0) 267

Table 8-10. NPMpm-x/NPMpc-x Mapping PEG Engines to Encoders (Servo Processor 0) 267

Table 8-11. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment
for Use as PEG Pulse Outputs (Servo Processor 0) 268

Table 8-12. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment
for Use as PEG Pulse Outputs (Servo Processor 1) 269

Table 8-13. SPiiPlus CMnt-x/UDMpm-x/CMhv-x/UDMhv-x General Purpose Outputs
Assignment for Use as PEG Pulse Outputs (Servo Processor 0) 270

Table 8-14. UDMnt-x/UDMpa-x/UDMcb-x General Purpose Outputs Assignment for Use as
PEG Pulse Outputs (Servo Processor 0) 270

22Version 3.02

ACSPL+ Programmer's Guide

Table 8-15. Engine to Encoder Assignment for IDMsm, ECMsm, and UDMsm 271

Table 8-16. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0 274

Table 8-17. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 1) 275

Table 8-18. CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0) 276

Table 8-19. CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0) 276

Table 8-20. CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0) 277

Table 8-21. CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0) 278

Table 8-22. UDMnt-x/UDMpa-x/UDMcb-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0) 279

Table 8-23. UDMlc-x/UDMmc-x/UDIlt-x/UDIhp-x/PDIcl-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0) 279

Table 8-24. NPMpm-x/NPMpc-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0) 280

Table 8-25. IDMsm/UDMsm/ECMsm Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0) 281

Table 8-26. PEG Output Signal Configuration 289

Table 8-27. Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-
x 293

Table 8-28. Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-
x 295

Table 8-29. Mark-1 and Mark-2 Inputs to Encoders Mapping for with SPiiPlus CMnt-
x/UDMpm-x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-x/UDMhv-x 296

Table 8-30. Variables and Functions for Hall Support 306

Table 8-31. Hardware Interrupt Callback Conditions 309

Table 8-32. String Format Type 317

Table 8-33. Channel Number Argument 320

Table 8-34. Trigger Bit and Interrupt for each Channel 323

Table 8-35. AST Bit Descriptions 333

Table 9-1. ECST Bits 353

Table 9-2. EtherCAT Error Codes 354

Table 9-3. Supported Error Counter Registers 358

23Version 3.02

ACSPL+ Programmer's Guide

Table 10-1. SPiiPlus Error Code Ranges 364

24Version 3.02

ACSPL+ Programmer's Guide

1. Introduction
This guide provides a general overview for programming the SPiiPlus™ motion controller products
using the ACSPL+ programming language.

The term “controller” is used in this guide whenever information applies for both
controllers and control modules. If information applies to only one of these product
groups, the group is stated explicitly.

1.1 ACSPL+ Programming Language

ACSPL+ is a powerful programming language developed specifically for SPiiPlus motion controllers.
ACSPL+ incorporates many advanced features, including: powerful programming elements such as
arithmetical and logical expressions, user-defined variables with local and global scope, user-
defined one- and two-dimensional arrays.

SPiiPlus ACSPL+ enables:

> Execution of up to 32 programs simultaneously

> Program isolation - each program resides in a separate buffer

> Rich set of motion types, providing a large degree of versatility

> Advanced implementation of master-slave motion

> Axis-independent programming

> On-condition autoroutines

Complete details of all ACSPL+ commands and variables are given in the SPiiPlus Command &
Variable Reference Guide.

ACSPL+ libraries are provided for host programming in other high level languages. The library for C,
C++, and Visual Basic are described in the SPiiPlus C Library Reference. Routines for synchronizing
communication between the host program and the SPiiPlus motion controller are given in SPiiPlus
COM Library. Routines using .NET are described in the SPiiPlus SPiiPlus .NET Library Programmer's
Guide.

25Version 3.02

ACSPL+ Programmer's Guide
1. Introduction

2. SPiiPlus Architecture
This chapter provides an overview the SPiiPlus architecture.

2.1 Hardware Structure

The following diagram shows the principal parts of the SPiiPlus controller hardware:

Figure 2-1. SPiiPlus Controller Hardware Structure

The Motion Processing Unit (MPU), which executes most of the controller tasks, is a powerful x86
processor. The MPU is an EtherCAT bus master and the Servo Processors (SP) are EtherCAT slaves.
One master can control several slaves.

The master MPU runs compiled ACSPL+ programs and generates motion profiles to the SPs. Its
principle tasks are:

> Communication with the SPs

> Motion profile generation (calculation of APOS)

> Calculation of Reference Position (RPOS)

> Safety control

> Data collection

> Position Event Generation (PEG)

> Processing of Index and Mark inputs

> Execution of ACSPL+ programs

> Communicating to Serial Link or Ethernet

> Execution of Immediate commands received from the Host

> Housekeeping

The MPU is equipped with a Flash (nonvolatile) memory that retains the stored data after the
power to the controller is turned off.

The SP executes the realtime tasks, such as implementation of the realtime control algorithms.
Each SP controls four axes. The SP includes all the necessary peripherals that are needed for a high
performance axis control.

A single MPU module can manage several units over the EtherCAT bus thus expanding the number
of controlled axes. For example,

26Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

Figure 2-2. Multiple SPs Connected via EtherCAT

The part of the system that is connected to the rest of the system via the EtherCAT bus
is called a UNIT.

2.1.1 Firmware

The firmware consists of a set of files factory-written in the flash memory.

You cannot erase or modify the firmware; however, you are able to update the firmware version
with a special tool that is part of the SPiiPlus MMI that is supplied with the controller.

The firmware files include the following:

> MPU program.

> Default values of the controller’s configuration variables.

2.1.2 Controller Cycle and Servo Tick

The firmware operates in a rigid realtime framework. The two principal parts of the firmware, the
MPU program and the SP programs are realtime programs operating in strict synchronism.

The SP interrupt has a fixed interval period (called a “servo tick”) of 50 μsec (20kHz). Most SP tasks
are executed each servo tick. Therefore, the SP executes the servo control algorithm at a constant
rate of 20kHz irrespective of the number of axes and other factors.

The 20kHz SP clock is divided by a factor of 20, generating a 1kHz clock for MPU interrupts. The new
clock, the controller cycle, is 1000 μsec.

2.1.3 Realtime and Background Tasks

MPU program tasks are divided into two categories:

> Realtime tasks
The realtime tasks are executed in strict synchronism with the MPU interrupt. Each
controller cycle, a required part of each realtime task is executed. The overall time of all
realtime tasks executed in one controller cycle must be less than the one controller cycle.

The following MPU tasks are the realtime tasks that are executed each controller cycle:

> Communication with the SPs

> Motion profile generation (calculation of APOS)

> Calculation of Reference Position (RPOS)

> Safety control

> Data collection

> Position Event Generation (PEG)

27Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

> Processing of Index and Mark inputs

> Execution of ACSPL+ programs

> Background tasks

Background tasks are not synchronous with the MPU interrupt. Execution of a background
task may overlap two or more controller cycles.

The following MPU tasks are the background tasks and are asynchronous to the controller
cycle:

> Communicating to Serial Link or Ethernet

> Execution of Immediate commands received from the Host

> Housekeeping

Figure 2-3. The Internal Structure of the Controller Cycle

The MPU interrupt invokes the realtime tasks. When all realtime tasks required in the current cycle
are completed, the controller starts executing the background tasks. If the background tasks
complete before the next MPU interrupt occurs, the controller remains idle for the rest of the cycle.

The exact time of the realtime and background tasks in each controller cycle depends on many
factors and cannot be precisely specified. The following paragraphs explain different situations in
controller cycle utilization.

If the background task execution does not finish in one controller cycle, the background execution
is interrupted and continues after execution of the realtime tasks during the next cycle. Therefore,
background tasks may overlap into the next MPU interrupt without causing a problem. However,
overflow of realtime tasks into the next MPU interrupt is abnormal, and may cause problems with
program execution. When this occurs, the controller latches the TIME OVERUSE fault. This fault has
no default response in the controller, but your application can monitor the fault and define a
proper response.

You can monitor if the usage of the controller cycle is close to critical. The SPiiPlus MMI
Application Studio Communication Terminal command: #Uwhen entered, reports the
usage as a ratio of realtime tasks execution time and the controller cycle. A maximum
value of 90% is considered dangerous. If the usage limit is reached, you have to modify
your application.

28Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

2.2 User Application

This section provides a look at the elements that go into the construction of a user SPiiPlus
application.

2.2.1 Firmware, User Application and Tools

The firmware is a program that is stored in the controller’s nonvolatile (flash) memory, that defines
the basic functionality of the controller. Among these functions are the preparing, storing and
executing your applications.

Your application tailors the controller to your specific controlled plant. The controller can control
various plants with different number of axes, mechanical construction, timing requirements, etc.
Your application specifies the exact control and monitoring actions that must be executed in
different conditions, including the exact sequences of motions, activation of outputs, response to
inputs and interactions with the operator.

SPiiPlus Tools are Windows-based programs that provide you with support in different stages of
the application such as initial set up and tuning, ACSPL+ application development, host application
interaction with the controller, and manual control.

2.2.2 User Application Components

The following diagram shows the parts of a user application in the gray blocks and the relevant
parts of firmware in the white blocks:

Figure 2-4. User Application Block Diagram

> Host-based program:
A program written in C, C++ or any other programming language that runs on the host
computer and communicates with the controller. The host-base program uses any
communication channel provided by the controller; serial link, Ethernet, FIFO, dual port
ram. The program issues commands to, and reads data from, the controller.
The program can provide front-end user interfaces, motion sequencing, high-level
decision-making and other application specific functions. This part of user application can
be absent if the controller works stand-alone without connection to the host.
The design of host-based programs is not the primary subject of this guide. For Windows
programming, refer to the SPiiPlus C Library Reference Guide.

> ACSPL+ program:
A sequence of ACSPL+ commands can be downloaded to the controller as an ACSPL+

29Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

program. There are 10 buffers for ACSPL+ programs. An ACSPL+ program is executed
inside the controller with strict timing and with no communication delay.
ACSPL+ programs are almost always present in user applications. Occasionally, the ACSPL+
programs are absent and the host commands all controller actions.

> Configuration variables:
The firmware includes a set of predefined variables that can be used by ACSPL+ programs
and by Immediate commands. The configuration variables are included in this set. The
values of the configuration variables are defined by the user to tailor the controller
operation to a specific task and plant control. For example, ACC defines the acceleration
that is used for motion generation. The SAFINI variable defines the polarity of the input
safety signals.
The configuration variables must always be present in user applications.

> SP programs:
The firmware includes SP (Servo Processor) real time control programs as a standard part
of the controller.

2.2.3 User Applications Categories

You can use different strategies to build an application, including:

> Stand-alone application:
No physical link to a host. No host-based program. ACSPL+ programs are stored in the
controller flash memory. The ACSPL+ programs start running after power-up and
implement all application functions.

> Host-driven application:
No ACSPL+ programs. The host issues all commands to be executed by the controller. This
approach is applicable only for non-time-critical applications.

> Hybrid application:
A host-based program plus one or more ACSPL+ programs. Most user applications fall into
this category.

2.2.4 SPiiPlusMMI Application Studio

SPiiPlus MMI Application Studio is a multipurpose user interface with the controller that provides
the user with the means to fully control and monitor the performance of the motion controller.

30Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

Figure 2-5. SPiiPlus MMI Application Studio Main Screen

The main features of the SPiiPlus MMI Application Studio are, amongst others:

> Program Manager
Used for entering user-written programs into the motion controller’s buffers.

> Motion Manager
Used for completely defining the motion for all axes in the system.

> Communication Terminal
Used for entering commands directly into the controller.

> Scope
A digital oscilloscope providing a realtime graphic display of the motion.

> Variables Manager and Watch
Enables the user to set watch windows for the values of critical variables.

For complete details see SPiiPlus MMI Application Studio Guide.

31Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

2.2.5 File ExtensionsUsed in SPiiPlusMMI Application Studio

Several file formats are used to store data and programs used with SPiiPlus MMI Application Studio.
The file formats are:

Table 2-1. SPiiPlus MMI Application Studio Extensions

File
Extension

Content
Associated SPiiPlus MMI
Application Studio
Component

.acsw Workspace configuration Workspace

.awd Drive database Adjuster Wizard

.awf Feedback database Adjuster Wizard

.awm Motor database Adjuster Wizard

.frf FRF data FRF Analyzer

.log MMI log files
All components that
generate logs

.par Controller parameters Configuration Wizard

.prg ACSPL+ Program Program Manager

.rtf Print to file
All components that
enable printouts

.sgn Scope data Scope

.spi
Application (includes controller parameters +
adjustment parameters + ACSPL+ program + SP
files)

Upgrade and Recovery
Wizard

2.3 Programming Resources

The controller-based parts of the user application operate in the environment created by the
firmware. The environment includes a set of resources that the user application can use. This
section provides a short description of the available resources.

2.3.1 Commands

The controller supports a rich set of commands which are divided into two types of command sets:

> Terminal Commands
Terminal commands are those that are sent directly to the controller. They are entered
through the SPiiPlus MMI Application Studio Communication Terminal. The general
structure of the Communication Terminal windows is:

32Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

Figure 2-6. Communication Terminal Window

The Communication Terminal window is described in the SPiiPlus MMI Application Studio
Guide.

As soon as the command is received through one of the communication channels it is
executed. Each Terminal command starts with ? (query command) or # (program
management command), for example:

?FPOS Display the current position of all motors.
#0L List the complete program in buffer 0.

A Terminal command cannot be stored in a buffer. Once a Terminal command is
received via any communication channel, the controller executes it immediately or
rejects the command if it cannot be executed.

> Buffered Commands
The controller stores a sequence of commands in a buffer and executes them as a
program. ACSPL+ commands can either be executed immediately or can be stored in a
buffer. Examples of ACSPL+ commands that are stored in a buffer:

ENABLE 0 Enable axis 0
Var = 5*Var2 Assign the result of expression to variable Var
WAIT 50 Delay the program for 50 msec
PTP 0,3000 Move the 0 motor to point 3000

2.3.2 Program Buffers

The controller provides up to 64 buffers for storing ACSPL+ programs (depending on controller
configuration). The controller defines the size of each buffer according to the required size of the
program. For all practical purposes, you can consider the size of each buffer to be unlimited.

A program stored in a buffer can be edited, compiled and executed independently of the
programs in other buffers. For example, a program in buffer 0 may be running while you edit the
program in buffer 1.

Programs stored in different buffers can be executed concurrently. Each buffer defines an
execution thread connected to this buffer. When you activate a program in a buffer, the program is
executed in a separate thread. Therefore, up to 64 ACSPL+ programs (depending on controller
configuration) can be executed concurrently.

33Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

A buffer also provides isolation between the programs. All labels and local variables defined in a
program are isolated in their buffer and are inaccessible from any other buffer. For example, two
programs can contain identical user-defined labels, but the controller considers each label as
belonging only to the buffer in which it is contained, and relates to all references to the label
appropriately.

2.3.2.1 ACSPL+ Buffers Compilation Behavior

Until Version 2.40, when compiling all ACSPL+ buffers together (either in the SPiiPlus MMI
Application Studio, by using CompileBuffer() function with ACSC_NONE parameter, or by issuing ##C
command), the D-Buffer was compiled last and in most of the cases was not compiled at all.

Starting from Version 2.40, the D-Buffer is compiled first and therefore all global variables that are
defined in D-Buffer, are set to 0 as part of the compilation process. These global variables must
later be set to their desired values.

2.3.3 DeclarationBuffer (D-Buffer)

The D-Buffer is an additional special buffer that provides a place for the definitions of axis names
and global variables.

Executing programs and autoroutines is not supported in D-Buffer.

2.3.3.1 Defining Global Objects in D-Buffer

Axes and global variables defined in D-Buffer are not required to be defined in other buffers
before use. However, such redefinition is not an error, given all attributes of the definitions are
identical.

The #SAVE and #SAVEPROG commands store the D-Buffer in the flash along with other buffers.

The values are also stored using the SPiiPlus MMI Application Studio Program Manager
Buffer Editor.

At start-up, the controller loads and compiles the D-Buffer before any other buffers.

After any change in the D-Buffer, all other buffers should be recompiled.

2.3.3.2 D-Buffer Default Contents

The default contents of D-Buffer differ from other buffers. The other buffers are initially empty by
default; however, the D-Buffer contains a set of definitions that provides compatibility with

34Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

previous firmware versions. The default contents of the D-Buffer are:

axisdef X=0,Y=1,Z=2,T=3,A=4,B=5,C=6,D=7
axisdef x=0,y=1,z=2,t=3,a=4,b=5,c=6,d=7
global int
I(100),I0,I1,I2,I3,I4,I5,I6,I7,I8,I9,I90,I91,I92,I93,I94,I95,I96,I97,I98,I99
global real
V(100),V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V90,V91,V92,V93,V94,V95,V96,V97,V98,V99

This provides you with the means to define names for the axes in your system (axisdef). The two
100 element arrays, one an integer and one a real, are, however, for internal use.

The #RESET command restores the default content in the D-Buffer.

2.3.4 Command Execution

2.3.4.1 Terminal Commands

Once a Terminal command is received from the SPiiPlus MMI Application Studio Communication
Terminal, the controller executes it immediately or rejects the command if it cannot be executed.

The controller executes Terminal commands as a background task. One Terminal command cannot
be interrupted by another. The controller finishes execution of a command, sends a reply, and only
then continues to the next command. Therefore, a host-based process that sends commands is
guaranteed to receive the replies in the same order as the commands were sent.

Typically, execution of a Terminal command takes 1-2 controller cycles. The commands that supply
or request a great amount of data, such as query of a large array, may require a longer processing
time.

Processing time can also be affected by a high MPU usage. The realtime tasks always have the
greatest priority. If the usage (percentage of the realtime tasks in the controller cycle) reaches 90%
or more, the response time of the controller deteriorates. If an application requires the fastest
response to Terminal commands, you must keep the usage below 50%.

2.3.4.2 ACSPL+ Commands

There are two methods for executing ACSPL+ commands:

> Execute immediately - via the SPiiPlus MMI Application Studio Communication Terminal.

> Store a sequence of commands in a buffer and then execute the sequence as an ACSPL+
program.

If the prompt is: (colon), no program buffer is open for editing, and an ACSPL+ command,
transmitted to the controller through the Communication Terminal, is executed immediately.

Immediate execution of ACSPL+ commands is a background task. Therefore, the processing time
can be affected by a high MPU usage. The realtime tasks always have the highest priority. If the
usage (percentage of the realtime tasks in the controller cycle) reaches 90% or more, the response
time of the controller deteriorates. If an application requires the fastest response to Immediate
commands, you must keep the usage below 50%.

Executing an ACSPL+ program from a buffer is different because the controller executes a
buffered ACSPL+ program as a realtime task. Up to 32 buffered ACSPL+ programs can be executed
simultaneously, and in parallel.

35Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

2.3.5 ACSPL+ Standard Variables

ACSPL+ standard variables are a set of predefined variables provided by the controller. You can use
ACSPL+ standard variables in any command, either immediate or buffered, without having to
declare them.

The ACSPL+ standard variables are divided into two categories:

> State variables - Examples are FPOS (Feedback Position), which reports the immediate
position of a motor and MST (Motor State), which indicates the motor status, including
whether it is enabled and whether is involved in motion.

> Configuration variables - The values of the configuration variables tailor the controller to a
specific control object. Examples are ACC (Acceleration), which specifies a tolerable
acceleration of a motor and SLLIMIT (Software Left Limit), which specifies a lower limit for
the area of motion, etc.

ACSPL+ variables are mentioned throughout this guide where they relate to a particular element or
feature of ACSPL+.

2.3.6 User-Defined Variables

In addition to the set of ACSPL+ standard variables, you can declare variables with user-defined
names as required in the application.

A user-defined variable can be declared as scalar, one-dimensional array (vector) or two-
dimensional array (matrix).

A user array can contain up to 100,000 elements.

A user-defined variable can be declared as local or global. Local variables are accessible only within
the buffer that the declaration resides in. Global variables are common to all buffers and can be
accessed from any buffer.

2.3.7 Nonvolatile Memory and Power Up Process

The on-board nonvolatile (flash) memory retains information while power is off.

The flash memory stores the following data:

> Firmware as well as SP programs

> User application

A new controller is supplied with only the firmware and SP programs stored in the nonvolatile
(flash) memory. You cannot erase or modify the firmware or the SP programs. You can, however,
store ACSPL+ programs and configuration variable values in the controller’s flash memory.

During the power-up process the controller loads the firmware, the ACSPL+ programs, the
configuration variables and the SP programs from the flash memory. If you did not store any
component of configuration variables, the controller loads the default firmware component.

36Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

2.4 Executing ACSPL+ Programs

2.4.1 Program Buffers

The controller provides up to 64 program buffers.

Each buffer provides:

> Separate storage for each ACSPL+ program

> An isolated environment for program editing/execution

> Separate thread for concurrent execution

> Independent autoroutine execution

Each buffer is managed independently of the other buffers. For example, you can edit a program in
one buffer while the program in another buffer is executing.

All labels and local variables in a program are local in the encapsulating buffer. Programs in other
buffers do not have access to these label and variables. Even if two programs in different buffers
both define a local variable with the same name, the variables are considered as two different
variables, each in its corresponding buffer.

A program in a buffer can be executed independently of any other program. The program
executed in a buffer does not affect the program executed in other buffers, unless you have
provided for synchronization through the global variables or common resources.

If a program in a buffer includes one or more autoroutines, the buffer manages the autoroutines
independently of other buffers. If an autoroutine condition is satisfied, only the program executed
in the enclosing buffer is interrupted. No other buffer is affected.

The time allotted for processing non-executable lines, e.g., comment, a new line, a label, etc., is
controlled by the S_FLAGS.1 bit. If the bit is 0 (default), the non-executable line will be skipped
during execution. If the bit is 1, the line will be allotted a controller cycle. executed as before taking
a standard time for execution.

The bit affects the program compilation; therefore, if the bit is changed, the results will be visible
only after a program is recompiled.

2.4.2 Executionof a Single Program

Assume a compiled ACSPL+ program containing no errors is stored in buffer 0, and you issue the
following command in the SPiiPlus MMI Application Studio Communication Terminal:

#0X Execute the program in buffer 0

The controller starts execution from the first line.

The controller executes the program according to this simple model:

> One program line is executed each controller cycle. If a line contains several ACSPL+
commands, all them are executed in one controller cycle. See also Execution Rate.

> If a program is linear, meaning that it contains no program flow commands, like goto, and
no autoroutines, the program lines are executed sequentially: the first line in the first
controller cycle, the second - in the second controller cycle, and so on. A program flow

37Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

command redirects execution and defines another line to be executed in the next
controller cycle.

> A number of commands can delay program execution. For example, the command:

WAIT 50

> will execute for 50 milliseconds instead of one controller cycle. The command:

TILL ^MST(0).#MOVE

provides a delay of execution time until the 0 axis motion ends.

Commands that use the controller resources, like motion commands, also can be delayed if the
resource is busy. After a command that caused a delay has finished, the controller continues
executing one line per one cycle.

2.4.3 Concurrent Execution

Assume the programs in buffers 0, 1, 2 are linear and include no commands that can delay
execution. After starting simultaneously, the programs execute in a simple and predictable way:
one line of each running program per one controller cycle.

In the first controller cycle the controller executes line number 1 from buffer 0, line number 1 from
buffer 1 and line number 1 from buffer 2. In the second controller cycle the controller executes line
number 2 from buffer 0, line number 2 from buffer 1 and line number 2 from buffer 2, in
progression.

If a program contains a program flow command or a command that delays execution, this strict
synchronization vanishes, but the general principle remains the same: one line of each running
program per each controller cycle.

The rule does not depend on the number of concurrent programs. If all 64 programs run
concurrently, the controller executes 64 ACSPL+ lines in each controller cycle - one from each
running program.

Delay in one executed program has no affect on other executed programs. Each buffer provides an
isolated thread for program execution.

Within a controller cycle, the order of executing the program lines follows the buffer numbers: first,
a line from buffer 0 is executed, then a line from buffer 1, and so on.

2.4.4 Immediate Execution

What happens if while one or more programs are running at the same time and the controller
receives a SPiiPlus MMI Application Studio Communication Terminal ACSPL+ command through a
communication channel?

The controller executes the Communication Terminal command in an additional thread not
connected with any buffer. Therefore, the controller provides up to 64 + 1 threads for ACSPL+
execution. Up to 64 threads are assigned to the program buffers and one thread is reserved for
immediate execution.

38Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

All rules of the execution model also apply to immediate execution. For example, if several
commands are combined in one line for immediate execution, all of them are executed in one
controller cycle in parallel with the lines from each running program.

Within a controller cycle, the immediate line is executed after all lines from the running programs.
Therefore, in one cycle the controller executes a line from buffer 0, then a line from buffers 1, 2, up
to 63, and then executes a Communication Terminal command line (if any has been received).

2.4.5 Immediate Execution vs. Stored Program

The controller provides three options for executing ACSPL+ commands:

> Execute a command immediately

> Store a sequence of commands in a buffer and then execute the sequence as an ACSPL+
program

> Execution in a dynamic buffer
If the controller prompt is: No program buffer is open for editing, and an ACSPL+
command, transmitted to the controller through any communication channel, is executed
immediately.
If the prompt contains a line number like 2:00001>, a program buffer is open for editing,
and an ACSPL+ command, transmitted to the controller through any communication
channel, is stored in the open buffer. ACSPL+ commands stored in a buffer constitute an
ACSPL+ program.

2.4.6 Autoroutine Execution

An autoroutine is a part of ACSPL+ program and can be placed in any program buffer. Each ACSPL+
program can contain from zero to any number of autoroutines. An autoroutine placed in a buffer
shares the local variables and the same thread for execution with other autoroutines in the same
buffer and with the rest of ACSPL+ program.

If a buffer contains one or more autoroutines, the execution model described above is slightly
modified. In each controller cycle, the controller examines the conditions of all autoroutines in the
buffer, before executing the next line in a buffer. If a condition is satisfied, the controller does not
execute the next line but executes the first line of the body of the corresponding autoroutine.
Therefore, the autoroutine interrupts the program executed in the same buffer. An autoroutine in
one buffer has no affect on the program or autoroutines in another buffer.

Autoroutines provide an interrupt-like response to external or internal events. For more
information about autoroutines see Autoroutines.

2.4.7 Synchronization and Mutual Exclusion

Though the controller provides independent execution of concurrent programs, applications can
often require that their component programs be synchronized at certain points. The controller
provides a simple and flexible approach to solving synchronization problems. In addition to an
ACSPL+ line serving as a unit for concurrent execution, the same ACSPL+ line serves as a unit of
mutual exclusion. Namely, execution of an ACSPL+ line cannot be interrupted by a concurrent
program or by an autoroutine.

Therefore, an ACSPL+ line provides an atomic unit of execution. Given that a single ACSPL+ line can
contain any number of ACSPL+ commands, various synchronization tasks can be resolved using
global variables.

39Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

2.4.7.1 Mutual Exclusion

Mutual exclusion is the most frequently used synchronization task. As the execution of an ACSPL+
line is atomic, mutual exclusion of the lines in concurrent programs is automatic and does not
require any intervention from the user. If a critical section requiring mutual exclusion comprises
only a few commands, then you simply place these commands in one line.

However, if a critical section is long, or combining it in one line is undesirable for any reason,
another solution must be found. The following construction implements a simple semaphore,
which is ON (one) while the program is inside the critical section, and is OFF (zero) otherwise.

global int Mutex Variable Mutex implements semaphore
. Any program actions
TILL ^Mutex; Mutex = 1 Enter critical section
. Critical section
Mutex = 0 Exit critical section

The Enter and Exit lines enclose the critical section. If the program contains several critical sections,
each section must be enclosed with the same Enter and Exit lines as shown in the example above.

All programs that require mutual exclusion must include the same declaration of the Mutex
variable and the same embracing of each critical section.

This construction guarantees that only one of the concurrent programs may be inside a critical
section. If the second program tries to enter the critical section, the command TILL ^MUTEX delays
the program execution until the first program zeroes MUTEX on exit from critical section.

It should be noted that the solution is based on automatic one-line mutual exclusion. Therefore,
the two commands:

TILL ^Mutex; Mutex = 1

must be in one line. If they are placed in two sequential lines, they cannot provide mutual
exclusion.

2.4.7.2 Synchronization

Assume two programs that run mostly asynchronously must execute certain commands at the
same time. There is a point in each program that whichever program comes to the point first, it
must wait for the second program to come to its synchronization point. Then the next lines in both
programs will be executed in the next controller cycle.

The problem is solved by the following construction:

global int Sem The SEM variable implements a general semaphore
. Asynchronous part of the program
Sem = Sem+1; till Sem = 2; Sem = 0 Synchronization point
. The line will be executed synchronously

The same definition of the SEM variable and the same line of synchronization point must be in the
second program.

Whichever program comes to its synchronization point first, the command TILL SEM = 2 provides
waiting for the second program. The assignment SEM = 0 provides reuse of the construction if
necessary.

40Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

The solution can be also be extended to three or more concurrent programs.

2.4.7.3 Execution Rate

In the execution model described above, the controller executes one line from each running
program per each controller cycle. The execution rate in each buffer is the same.

You can modify the execution model by specifying how many lines in each buffer the controller
must execute in one controller cycle.

ACSPL+ variables PRATE and ONRATE (see SPiiPlus Command & Variable Reference Guide) contain
one element per each program buffer. Each element of PRATE specifies how many lines in the
corresponding buffer the controller must execute in one controller cycle, except the case if an
autoroutine is executed. Each element of ONRATE specifies the same when an autoroutine is
executed.

For both variables, the default value is 1 (one line per each controller cycle). The user can increase
the value up to 10 (ten lines per each controller cycle).

In a typical case the user increases PRATE and ONRATE in one buffer, providing the higher
execution rate in this buffer. The program in this buffer runs faster, than the programs in either
buffers, as if the buffer has a higher priority.

You should, however, exercise caution when simultaneously increasing the execution rate in
buffers. Increasing the execution rate increases the usage of the controller realtime cycle and may
cause a Time Overuse fault. Use the #U Immediate command (see SPiiPlus Command & Variable
Reference Guide) to monitor the present usage. If maximum usage value approaches 90%, the
application places an excessive load on the controller. Decrease execution rates, simplify your
application, or use a more powerful model of the controller, to solve the problem.

41Version 3.02

ACSPL+ Programmer's Guide
2. SPiiPlus Architecture

3. ACSPL+ Overview
SPiiPlus enables running up to 64 separate ACSPL+ programs. The programs are stored in what are
referred to as “buffers”. The programs are entered via the SPiiPlus MMI Application Studio Program
Manager (see SPiiPlus MMI Application Studio User Guide for details).

This chapter provides a general overview of ACSPL+ programming.

For complete details of the ACSPL+ command set and variables refer to the SPiiPlus Command &
Variable Reference Guide.

3.1 ACSPL+ Syntax

3.1.1 Commands, Lines, and Command Aggregates

A command is the smallest executable unit of ACSPL+.

One program line may contain one or several commands. If a line contains several commands, the
commands must be separated by a semicolon (;). A semicolon after the last (or single) command in
a line, however, is not required.

Examples:

The following is an example of a program line that contains one assignment command:

V0 = V1 + 2*(V2 - V3)

The following is an example of a program line that contains two assignment commands:

V0 = V1 + 2*(V2 - V3); V4 = 0

White spaces (spaces and tabs) may be inserted arbitrarily inside or between commands. However,
white spaces must not be inserted within a keyword or variable name.

A command aggregate consists of several commands. It starts with a specific command and
terminates with the END command. For example, a loop structure starts with the loop command
followed by an arbitrary number of commands and terminates with the END command signalling
the completion of the loop. The commands of a structure may reside in one or more program lines.

3.1.2 BLOCK..END Control Structure

The commands specified within the BLOCK..END structure are executed in one controller cycle.

The structure has the following syntax:

BLOCK command_list END

The structure provides an alternative to specifying command_list commands in one line. The
commands within the structure can be specified in several lines. However, the controller executes
all commands in one controller cycle, as if they were written in one line.

The following limitations are applied to the commands within the structure:

Commands and functions that may cause delay (WAIT, TILL, GETSP, WHILE, LOOP, etc.) provide
delays even if they are used within the BLOCK..END structure.

42Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.1.3 ACSPL+ Reserved Words

All ACSPL+ function and variable names see the SPiiPlus Command & Variable Reference Guide) are
reserved words that have specific meanings. They cannot be used as user-defined names in a
program.

3.1.4 Names: Variable and Label

A name is a sequence of alphanumeric characters used to denote one of the following:

> Variable (ACSPL+ or user-defined)

> Label

The first character of a name must be a letter.

The names of ACSPL+ variables are predefined and cannot be changed. For a full list of ACSPL+
variables see the SPiiPlus Command & Variable Reference Guide.

There is also an ACSPL+ label: AUTOEXEC. If this label is used in a program, then execution will start
at this point when the controller is powered up.

You can declare user variables and user labels as required in the application. The number of user-
defined names and the length of each name are essentially unlimited. However, you may not
declare variable names that coincide with the following:

> Keywords (IF, WAIT, SIN, etc.)

> Names of ACSPL+ variables (FPOS, MST, etc.)

> AUTOEXEC (ACSPL+ label)

> Postfix- indexed form of an ACSPL+ variable

3.1.5 Case Sensitivity

All keywords are case-insensitive, e.g., the words if, IF, If or iF all have identical meaning in a
program.

Variable and label names, however, are case-sensitive, e.g., the names FPOS and Fpos designate
two different variables.

3.1.6 Axis Designations

Many ACSPL+ commands take one or more axes as arguments. This applies particularly for motion
commands (see ACSPL+ Motion Programming).

Axes can be designated as a single digit, like 0 (indicating the 0 axis), or as a list of values enclosed
within parentheses, for example, (0, 2, 4). The values can also be represented by variables.

Some commands support the keyword: ALL, to designate all the axes supported by the controller.

The following examples are equivalent:

AXISDEF XY=0 !Define axis variable
ENABLE XY !Enable axis 0
PTP XY, 100, 200

ENABLE (0,1) !Axes designated as list of values.
PTP (0,1), 100, 200

43Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

int first_axis, second_axis !Variable declarations.
first_axis = 0 !Variable assigned value.
second_axis = 1 !Variable assigned value.
ENABLE (first_axis, second_axis) !Axes designated as list of variables.
PTP (first_axis, second_axis), 100, 200

3.1.7 Comments

A comment is text in a program that the controller stores along with the program but ignores while
executing the program. Comments are normally used to annotate a program.

A comment starts with an exclamation mark (!). An exclamation mark encountered in a line
designates all subsequent characters in the line as part of a comment. If the exclamation sign is the
first character in a line, the whole line is a comment.

! This entire line is a comment.

V0 = V1 !This comment starts from the exclamation mark.

3.2 Variables

Variables have the following attributes:

> Name

> Class (standard or user variable)

> Scope (global or local)

> Lifetime

> Accessibility (read-write, read-only, protected)

> Type (integer or real)

> Size

> Value

The controller has a large set of ACSPL+ variables with predefined names. You cannot
change these names. These ACSPL+ variables can be used in ACSPL+ commands
without an explicit declaration.

3.2.1 Variable Name

Variable names follow the general syntax rules given in Names: Variable and Label.

User-defined variable names must be specified by explicit declaration. For example:

int Var1, Var2 !Declare local variables Var1 and Var2
global real RealVar !Declare global variable RealVar

3.2.2 Variable Class: ACSPL+ or User

ACSPL+ variables are predefined in the controller. ACSPL+ variables can be used in ACSPL+
commands without an explicit declaration.

44Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

ACSPL+ variables are mentioned throughout this guide where they relate to a particular element or
feature of ACSPL+. For details of the ACSPL+ variables see the SPiiPlus Command & Variable
Reference Guide.

User-defined variables are defined by explicit declarations. A declaration can appear as:

> A part of an ACSPL+ program. The declared variable becomes available when the program
is inserted into one of the program buffers and is compiled. Any attempt to query a
variable in a buffer window that has not been compiled will result in an error.

> An immediate ACSPL+ command. Only global variables can be used as a Terminal
command. The declared variable becomes available immediately after the controller
executes the command.

3.2.3 Variable Scope

Variables have either global or local scope.

3.2.3.1 Global Variable Scope

A variable with global scope can be used in any program buffer and also in Terminal commands.

All ACSPL+ variables have global scope. A user-defined variable can be declared as either global or
local.

Declaration of user global variable starts with the keyword GLOBAL. For example:

global real GlobVar !Declare the GLOBVAR variable as a global variable

This declaration may appear in several program buffers. However, in distinction to local variables, all
these declarations are considered to be the same variable.

Using a ACSPL+ variable in a program does not require explicit declaration of the variable. However,
a global user variable must be declared before it can be used in a program. Terminal commands can
use any global variable without explicit declaration.

3.2.3.2 Local Variable Scope

A variable with local scope can be used only in the program buffer where it is declared. Only user
variables can be local.

By default, if a declaration does not contain the keyword GLOBAL, the variable is declared as local.
However, it is recommended that you include the keyword LOCAL for clarity. For example, the
declaration

real LocVar

is the same as

local real LocVar

Both of them define LOCVAR as a local variable.

A local variable is valid only within the buffer where it is declared. If a local variable with the same
name is declared in another buffer, the controller considers them as two different variables.

45Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

The name of a local variable may also be the same as the name of a global variable. The controller
considers them as different. The program where the local variable is declared has access to the
local variable only.

3.2.4 Variable Lifetime

All ACSPL+ variables are valid as long as the controller firmware is active; from power-up to power-
down.

A user local variable is valid as long as the program containing it is compiled. Therefore, a local
variable becomes active when the program containing it is inserted into one of the buffers and is
successfully compiled. After compilation, the variable is assigned its value and is available for the #V
(list of variables) SPiiPlus MMI Application Studio COMMUNICATION TERMINAL command and queries.

Local variables are erased when the program they to which they belong returns to non-compiled
state. Programs may enter a non-compiled state as a result of:

> Explicit #SR command (Stop and Reset)

> Editing or inserting another program in the buffer

When a program terminates normally, it remains in a compiled state and local variables therefore
remain valid. In addition, if a controller-executed program causes an error, the controller
terminates the program, but the buffer remains in a compiled state. Any user variable in the buffer
therefore remains valid.

A user global variable declared in one or more ACSPL+ programs is valid as long as at least one of
the programs that contains it is compiled. After compilation, the global variable is assigned its value
and is available for the #V (list of variables) Terminal command and queries.

A user global variable disappears when the last program that it is contained in returns to a non-
compiled state. The conditions when a program may return to non-compiled state are discussed
above.

A special case of user global variable is the persistent global variable. A global variable is defined as
persistent when the variable declaration is not a part of any program but is issued as an immediate
ACSPL+ command.

Assume, that you execute the following commands via the COMMUNICATION TERMINAL window:

global real PersistentVar !Declaration
?PersistentVar !Query
0 !Initial value

The controller immediately accepts the declaration and creates the persistent global variable:
PERSISTENTVAR. The variable is now valid and can be queried as illustrated by the query command,
?PERSISTENTVAR, that follows.

The lifetime of a persistent global variable is not connected with any program. A persistent variable
survives any change in the program buffers and may be erased only by the explicit #VGV (Clear
Global Variables) Terminal command.

3.2.5 Variable Accessibility

All user variables have read-write access and are not protected. Any ACSPL+ command located in
the scope of a variable can use or assign the variable’s value at any time.

46Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

An ACSPL+ variable can belong to any of three access classes:

> read-write
Read-write ACSPL+ variables such as user variables can be used or assigned at any time.
Examples of read-write ACSPL+ variables are VEL (Velocity) and IST (Index State).

> read-only
Many ACSPL+ variables are read-only. These variables cannot be assigned. The read-only
variables provide readouts of the controller state. Examples include RPOS (Reference
Position), FPOS (Feedback Position), MST (Motor Status).

> protected
Protected ACSPL+ variables define the configuration of the controller, and are therefore
called configuration variables. The values of configuration variables can be read at any
time. Assignment to configuration variables is allowed only in the Configuration Mode.
Examples of configuration variables are ENTIME (Enable Time), and XACC (Maximal
Acceleration).

In most applications, you set the values of configuration variables during the application
development process by using the special tools provided for this purpose in the Protection Wizard
of the SPiiPlus MMI Application Studio (see the SPiiPlus MMI Application Studio User Guide).

3.2.6 Variable Type: Integer and Real

ACSPL+ supports integer and real variables.

Each ACSPL+ variable has a predefined type. For a user variable the type is specified in the
declaration.

The controller provides automatic conversion from integer to real and from real to integer if
required. Therefore you are not restricted in using variables of both types in ACSPL+ commands.

For example in the following fragment:

int Var1 !Declare Var1 integer variable
real Var2 !Declare Var2 real variable
Var1 = Var2 !Controller automatically converts real to integer
Var2 = Var1 !Controller automatically converts integer to real

The types differ by internal presentation and behavior in arithmetical operation.

> An integer value occupies 4 bytes, 32 bits, numbered from 0 to 31. The sign is located in bit
31, bit 0 is the least significant bit of the mantissa.

> A real value occupies 8 bytes, 52 bits of mantissa and 12 bits of exponent. The format
corresponds to the standard double format of PC.

3.2.7 Variable Size

A variable can be a scalar, one-dimensional or two-dimensional array. A one-dimensional array is
referred to as a vector, and a two-dimensional array is referred to as a matrix.

The size of each ACSPL+ variable is predefined in the controller. For example, the S_FAULT (System
Faults) variable is a scalar variable, and the FAULT (Motor Faults) variable is an array of 8 elements.

47Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Many ACSPL+ variables are sized according to the number of axes, with one element per each axis.
For example, each element of the FAULT array displays faults for one axis.

The size of user variables is defined in the variable declaration. For example:

int ScalarVar !Declare the ScalarVar variable as a scalar variable
global real Ar1(100) !Declare Ar1 as a global array of 100 real numbers
int Ar2(10)(200) !Declare Ar2 as a 10x200 matrix of integers

The maximum size of a user array is 100,000 elements.

3.2.8 Variable Value

Value is the only variable attribute that can change during a variable lifetime. In most applications, a
value is changed explicitly, as a result of assignment.

Read-only variables change their values implicitly. For example, the controller updates the
elements of variable FPOS (Feedback Position) each controller cycle, so that each element displays
the actual position of the corresponding motor.

3.3 Variable Declaration

ACSPL+ variables are predefined in the controller and do not require explicit declaration; however,
each user variable must be declared in the program where it is used.

Syntax:

[scope-specification][type-specification] name [size-specification]

Where:

> [scope-specification] is one of:

> local

> global

> [type-specification] is one of:

> int

> real

> name - the name of the variable

> [size-specification] - required when defining an array, it can be one of:

> (integer) - One dimensional array

> (integer) (integer) - Two dimensional array

Any of the parts of either the scope-specification or the type-specification can be omitted, but not
both. If scope-specification is omitted, the local specification is implied. If type-specification is
omitted, the int specification is implied.

If no size-specification is specified, the variable is taken as scalar.

48Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.3.1 Declarationof Global Variables

A global variable is common for all programs in all program buffers.

To have access to a global variable, a program must declare it. Without explicit declaration a global
variable is invalid in a program. Therefore declaration of a global variable may appear in several
programs, but all these declarations refer to the same variable.

Declarations of a global variable in different programs must be identical. Declaring a global variable
in two buffers with the same name, but different type or size, causes a compile error.

A global variable becomes active once the first program containing it is compiled in one of the
program buffers. The variable remains valid as long as at least one of the programs containing it
remains compiled.

Local and global variables are initialized to zero during compilation.

Examples of the global variable declarations:

global int Var1 Var1 is declared as a global integer variable
global real Var2, Var3 Var2 and Var3 are declared as global real variables
global int Var4, Var5(2)(100) Var4 is declared as a global integer variable and

Var5 is declared as a two-dimensional array of integers

3.3.2 Persistent Global Variables

A persistent global variable is a global variable that is declared by Terminal command. Terminal
execution of ACSPL+ commands is described in Immediate Execution. A command executed
immediately is not included in a program or stored in a buffer.

A global command executed immediately declares a persistent global variable, whose lifetime is
not dependent on any buffer. A persistent variable becomes active immediately when the
command executes. The variable remains valid throughout any buffer manipulations. The only way
to erase a persistent variable is by executing the #VGV (Vanish Global Variables) command. The
command erases all persistent global variables that are not referred in any compiled buffer.

A program in any buffer can access a persistent global variable. Like a regular global variable, a
persistent variable must be re-declared in each buffer where it has to be used. The declaration in a
buffer does not affect the persistency of the variable. However, once declared in an Terminal
command, the variable remains persistent irrespective of all re-declarations. A local variable, on the
other hand, cannot be declared by an Terminal command. For example, assuming that you are
communicating with the controller through the SPiiPlus MMI Application Studio COMMUNICATION
TERMINAL window and want to start data collection without preparing a special ACSPL+ program.
The following dialog occurs:

global Data(2)(1000) !Declare persistent global array of size 2x1000
DC Data,1000,1,FPOS(0),PE(0) !Collect Feedback Position and Position Error of 0

axis motor, 1000 samples, 1 millisecond sampling period
?S_ST !Query the System State variable
3 ON Data Collection (#DC) Response to query: data collection is in progress.
?S_ST !Query the System State variable
3 OFF Data Collection Response to query: data collection is off.
?Data !Query the Data array

49Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.4 Arrays and Indexing

3.4.1 Scalars and Arrays

A variable can be either scalar or array. A scalar variable contains a single value. An array contains a
set of values. The arrays are subdivided into one-dimensional arrays and two-dimensional arrays or
matrices.

Before an array is used, its size must be declared. The size of a one-dimensional array is the
number of elements in the array. The size of a two-dimensional array is determined by multiplying
each dimension, for example 2x2000 (for a total of 4000 elements).

Access to the value of a scalar variable is provided by its name. For example:

int Scalar1 Declare SCALAR1 as a local integer
Scalar1 = 4 Assign 4 to SCALAR1
DISP Scalar1 Display a value of SCALAR1
DISP Ar2(1) Display value of column 1 of the AR2 matrix

A typical use of an array requires access to a specific element of the array. To specify an element of
an array the array name must be followed by index specification. For example:

int Ar1(100),Ar2(3)(100) Declare local integer AR1 as a vector
of size 100 and local integer AR2 as a
matrix of size 3x100

Ar1(4) = 3000 Assign 3000 to element 4of AR1
Ar2(0)(99) = 20 Assign 20 to the element of AR2(0,99)
DISP Ar2(0)(99) Display the element of AR2(0,99)

Indexing of arrays starts from zero. In the example above the first element of AR1 has index 0, the
last element has index 99.

For information on saving user arrays in the nonvolatile memory, see Nonvolatile Memory and
Power Up Process.

3.4.2 ACSPL+ Array Variables

ACSPL+ variables include both scalar and one-dimensional arrays. For example, the variable S_ST
(System State) is scalar, while the variable FPOS (Feedback Position) is a one-dimension array of size
8.

Many ACSPL+ arrays are sized according to the axis number (eight elements). Such arrays contain
one element per each controlled axis or motor. For example, each element of read-only variable
FPOS reads a feedback position of the corresponding motor. FPOS(0) provides the position of the 0
motor, FPOS(1) provides the position of 1 motor, and so on.

Other ACSPL+ variables are related to the program buffers and therefore are sized according to the
number of buffers. For example, each element of PRATE specifies a program rate of the
corresponding buffer.

50Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.4.3 Explicit Indexing

Explicit indexing is applicable to both standard and user arrays. To access a specific element of an
array, the array name must be followed by one or two indexes. Each index must be enclosed in
parenthesis. A one-dimensional array requires one index and two-dimensional array requires two
indexes.

The following is the syntax of index specification:

> (expression) - One dimensional array

> (expression) (expression) - Two dimensional array

For example:

real Ar1(100),Ar2(2)(8) Declare AR1 as a local real vector of size 100
and AR2 as a local real matrix of size 2x8

int J Ar1(0) = 0 Assign 0 to the first element of AR1
J = 0 Assign 0 to J
loop 99 Repeat 99 times
Ar1(J+1) = Ar1(J) + 1 Fill Ar1 with a sequence of numbers 0-99
J = J + 1 Increment
end End of loop
J = 0 Assign 0 to J
loop 8 Repeat for each axis
Ar1(0)(J) = FPOS(J) Store current FPOS in AR1(0,J)
Ar1(1)(J) = PE(J) Store current PE in AR1(1,J)
J = J + 1 Increment
end End of loop

3.4.4 Postfix Indexing of Standard Arrays

Postfix indexing consists of a number appended to a standard array name without parenthesis. For
example, FPOS0 is equivalent to FPOS(0); both read the feedback position of the 0 motor. ERRI1 is
equivalent to ERRI(1) that specifies a tolerable position error for the 1 motor.

Postfix indexing is applicable to any standard array. However, user variables cannot accept postfix
indexing.

Postfix indexing is convenient if an element of an ACSPL+ array is used in an application as a
separate variable. For example, elements of ACSPL+ arrays V and I are often used as counters and
temporary variables. Postfix indexes allow using the elements as separate variables such as V0,
V22, I99.

Arrays IN and OUT (Digital Inputs and Digital Outputs) are also often used with postfix indexing. The
typical access to a digital input looks like:

IN0.4

where the first number after name IN is a postfix index and selects a group of 32 inputs. The
number after the period is a bit specifier used to select one of the 32 bits (in this case bit #4).

Explicit indexing can be either constant or expression, while postfix indexing is always constant.

Postfix indexing and explicit indexing can be used interchangeably in one program. However, it is
recommended that you select one style and use it throughout the application. If an application

51Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

requires non-constant indexing of axis-related variables, neither axis-like or post-fix indexing can
be used.

3.4.5 Axis Indexing

Each controller axis has an index. The index is an integer number from 0 to Number_Of_Axes-1.

Number_Of_Axes is defined by the controller model and cannot be changed, for
example, if there are 3 supported axes in a specific controller specification, 0
designates the first axis, 1 the next, and 2 the last.

The index of an axis is fixed, for example, INDEX 2 always refers to a specific physical axis. For
example:

VEL(1) – stores the velocity of the axis designated as 1.

ACC(5) – stores the acceleration of the axis designated as 5.

3.4.6 User-Defined AxisNames

You can assign names to the axes, and once assigned, the names are used as aliases throughout
your program. You do this through the command: AXISDEF.

Axis names follow the general rules for ACSPL+ names: a valid name can be any sequence of letters
and digits, but must start with a letter. However, some limitations on the axis names are
recommended as noted in this discussion.

The command can be used to define one or more axis names, for example, the command:

AXISDEF X=23, W12=9, T9=0

defines the name X for axis 23, W12 for axis 9, and T9 for axis 0.

AXISDEF can be repeated many times as you like to define all required names; however, the
following restrictions apply:

> Only one name can be defined for the same axis

> The names must be unique, i.e., you cannot define two axes with the same name

> The name must not conflict with any other name of variable, label, keyword, etc.

A compilation error occurs if one of the above restrictions is not satisfied.

Axis names must be defined either in D-Buffer - see Declaration Buffer (D-Buffer), or in a program,
where it is used. In any case, the axis definition has global scope; therefore the definition of the
same axis in a different program must be identical (similar rules apply to global variables). Axis
defined in D-Buffer can be used in any other buffer without re-definition.

3.4.6.1 Axis Name as Symbolic Constant

The axis name can be used in expressions as a symbolic constant. For example, given a program
that includes declaration:

52Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

AXISDEF Q=3

the following command

VEL(Q)=1000;

assigns 1000 to the required velocity of axis 3.

3.4.6.2 Axis Name in Indexing

In axis-related ACSPL+ standard array variables that contain Number_Of_Axes components, one
component per each controller axis, where the Index of the array ranges from 0 to Number_Of_
Axes-1. User axis names can be used for indexing, not only for explicit indexing, but also for prefix
and postfix indexing, for example: given the program includes declaration:

AXISDEF Q=3, X1=12, X2=13

Table 3-1. Example of the possible index formats.

Explicit Indexing Postfix Indexing

VEL(3) or VEL(Q) VEL3

ACC(12) or ACC(X1) ACC12

SLVKI(13) or SLVKI(X2) SLVKI13

3.4.6.3 Axis Specification in Commands

Another use of user-defined axes are arguments specifying a set of axes in ACSPL+ commands (like
ENABLE, KILL, PTP, etc.) which are considered as integer arrays. You can declare an array, assign its
elements, and then use it as a predefined axis group. For example, assume the application
frequently uses axes 1, 12, and 15 as a group. The program may contain the following commands:

int AxisGroup(3)
AxisGroup(0)=0; AxisGroup(1)=1; AxisGroup(2)=2;
ENABLE AxisGroup(0)
ENABLE AxisGroup(1)
ENABLE AxisGroup(2)
PTP AxisGroup,1000,1500,1200
HALT AxisGroup(0)
HALT AxisGroup(1)
HALT AxisGroup(2)
DISABLE AxisGroup(0)
DISABLE AxisGroup(1)
DISABLE AxisGroup(2)
stop

53Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Other formats of axis specification are also supported (actually, they are considered as special
forms of array specification):

1. Axis expression, like (0, 1, 2), (Ax1, Ax2, Ax3, Ax4).

2. The keyword: ALL that specifies all available axes.

3.4.7 Array Processing Functions

ACSPL+ provides the following functions for processing arrays:

> MIN – finds the minimum value in an array or any section of it

> MINI – finds the minimum value in an array or any section of it and returns its index

> MAX – finds the maximum value in an array or any section of it

> MAXI – finds the minimum value in an array or any section of it and returns its index

> AVG – finds the average value in an array or any section of it

> FILL – fills an array or section of it with the specified value

These functions are detailed in theSPiiPlus Command & Variable Reference Guide.

3.5 ACSPL+ Composite Data Structures

3.5.1 Introduction

A composite data type is a data type that is defined by the user and is comprised of multiple
primitive (INT/REAL) and other composite data types known as fields.

Composite data types are used to describe object with multiple characteristics; the different fields
of the data type relate to the different properties of the object.

Composite data types are the basis for object oriented programming.

From Version 3.02 and onward ACSPL+ will support STRUCTs.

3.5.2 STRUCT Type Definition

STRUCTs can only be defined in the D-BUFFER.

A STRUCT is defined by using the reserved word “STRUCT”, followed by the name of the data type
and an opening curly bracket.

Example

STRUCT MyStruct{
!Fields and functions
}

3.5.3 Fields

In between the brackets will appear the fields of the STRUCT.

Fields can be of several types:

> INT

> REAL

> INT ARRAY

54Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

> REAL ARRAY

> STRUCTs (recursion of STRUCT types is not supported)

All fields must have unique names.

All fields must be defined before functions are defined.

D-Buffer:
STRUCT MyStruct{
int field1;
real field2
real arr(10)
}

3.5.4 STRUCT type variable definition and use

3.5.4.1 Variable definition

To declare an instance of a STRUCT type variable the user specifies the name of the data type and
the name of the variable

Fields of type INT/REAL will be initialized to 0 and arrays will not be initialized.

STRUCT fields are accessed by use of a period (“.”) after the variable name, followed by the field
name.

Setting a field value follows the same syntax.

Global variables of STRUCT type can only be defined in the D-Buffer.

Buffer 0:
MyStruct var;
var.field1 = 6
var.arr(4) = 9.3

Complex STRUCT data type example:

To declare an instance of a STRUCT type variable the user specifies the name of the data type and
the name of the variable

Fields of type INT/REAL will be initialized to 0 and arrays will not be initialized.

STRUCT fields are accessed by use of a period (“.”) after the variable name, followed by the field
name.

Setting a field value follows the same syntax.

Global variables of STRUCT type can only be defined in the D-Buffer.

Buffer 0:
MyStruct var;
var.field1 = 6
var.arr(4) = 9.3

Complex STRUCT data type example

55Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

D-Buffer:
STRUCT InternalStruct{
int field1;
real field2
real arr(10)
}

STRUCT ExternalStruct{
InternalStruct internal;
}

Buffer 0:
ExternalStruct var;
var.internal.field1 = 6
var.internal.arr(4) = 9.3

3.5.4.2 Variable initialization

Local variables (non-global) are initialized in at run time.

> Primitive fields are initialized to zero

> Arrays are not initialized at all

> STRUCT fields (fields that are other STRUCTs) are also initialized accordingly.

Global STRUCTs (defined in the D-Buffer) are initialized only once – during compilation.

3.5.4.3 Expressions Using STRUCTs

A STRUCT can be passed to a function that receives the same data type. Similarly, a STRUCT field can
be passed as a parameter.

Accessing an interior STRUCT (a STRUCT inside a STRUCT) uses the same syntax as value
assignment.

3.5.5 STRUCT Functions

3.5.5.1 Function Definition

It is also possible to define behavior for a composite data type. For ACSPL+ STRUCTs this behavior is
defined using functions.

A function may be defined inside the scope of the STRUCT, between the curly braces. Alternatively,
a function may be declared inside the STRUCT with the function signature and defined outside the
STRUCT definition.

Like any other function it has a return type, name and parameters. Unlike other functions, a
STRUCT function can refer to the fields of the data type in which it was defined.

Unlike C/C++ and other programming languages, ACSPL+ STRUCTs have only default constructors
that are automatically executed when the STRUCT is created.

56Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.5.5.2 STRUCT Function Parameters

STRUCT functions can accept variables of the same types that regular functions accept.

If a variable name used was previously used hiding type semantics is used.

A STRUCT function can also accept a STRUCT of the same data type in which it is defined, supporting
implementation of comparison and cloning type functions.

3.5.5.3 Function Variables Definition

A STRUCT function can define the same variables as a regular function.

3.6 Using Variables

3.6.1 Querying Variables

The value of any variable can be displayed in response to a query command. See SPiiPlus Command
& Variable Reference Guide for a description of query commands.

Examples:

?FPOS Query feedback positions of all motors
1003 4001 233000 1 0 -1 0 1
?FPOS0 Query feedback positions of the 0 axis motors
1003
?FPOS0,FPOS2 Query feedback positions of the 0 and 2 axes motors
1003
233000
?GlobVar Query global user variable GlobVar
23.35
?0:LocVar Query local user variable LOCVAR from buffer 0
100
?0:LocVar,5:LocVar Query two local user variables from different buffers
100
233.7

3.6.2 Variables asOperands in Expressions

Variables can be used as operands in expressions.

An array, as a unit, cannot be an operand in an expression. Only the array elements can be used.
Therefore the array name must be fully indexed to provide access to a specific element.

In addition, a bit specifier can be added to an integer variable to provide access to a specific bit (as
shown in example).

An expression is calculated each time that a command that includes the expression is executed.
During calculation of the expression each variable is substituted with its current value.

Examples:

RPOS(0) - FPOS(0)
An arithmetical expression which produces the position error of the X
motor.

RPOS(0) < FPOS(0)
A logical expression which produces:

> 0 - if the 0 axis position error is positive

57Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

> 1 - if the 0 axis position error is negative

2*(VEL(3) - LocVar) An expression that combines standard and user variables.

(IN0.3|IN0.4)&^IN0.6
A logical expression that uses bit specifiers to access specific digital
inputs.

V0 An expression that contains only one variable with no operations.

3.6.3 Variables asArguments in Command or Function

Variables can be used as arguments in commands and functions.

Arguments used to specify commands and functions have specific requirements. In a typical
example, an argument is required to be an expression. In this case a single variable can be used as a
simplest case of expression. Use of variables in expressions is discussed in Variables as Operands in
Expressions above.

A number of commands and functions require a variable or an array as one of their arguments. For
example, the first argument of the DC command (Data Collection - see DC Command) is an array
that accumulates the collected data. Other examples are statistical functions, such as MAX, MIN, and
AVG, that process the whole array specified as an argument. Unlike their use in expressions, an
array name without indexes specifies the array as a whole.

For example, the following fragment collects data 1000 times on the FPOS for the 0 axis at intervals
of V0:

dc Data,1000,V0,FPOS(0)

Where:

1. The first argument of the DC command is required to be an array, in this case it is the user
array, DATA, that is specified without indexes, as a whole.

2. The second argument is an expression that defines the number of samples to be
collected, in this case it is a simple expression: the constant 1000.

3. The third argument is an expression that defines the sampling period. The V0 variable is a
simple expression. Using a variable instead of an integer provides changing the sampling
period, based on V0, from one execution of this data collection to another.

4. The fourth argument must be a variable or an array element. The values of the variable (in
this case V0) will be collected in the array. The syntax of DC requires that the fourth
element be a variable or an array element. Neither a general expression nor an array
without indexes can be specified. An array without indexes neither can be specified. FPOS
(0) addresses element 0 of the array FPOS that corresponds to the 0 axis feedback
position.

3.6.4 Variables inACSPL+ Terminal Commands

The SPiiPlus MMI Application Studio COMMUNICATION TERMINAL execution of the ACSPL+
commands is described in Immediate Execution. A command immediately executed is not included
in a program or stored in a buffer.

58Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Use of variables in immediate ACSPL+ commands is limited to ACSPL+ and global variables. Local
variables cannot be referenced in immediate ACSPL+ commands.

3.6.5 Accessing Variables by Tags

3.6.5.1 Variable Tags

The controller supports integer numerical tags for all standard ACSPL+ variables. You are also able
to define tags for user-defined variables. The ACSPL+ program is able to access a variable by a tag
as described in the next section.

> ACSPL+ Standard Variable Tags
The tags of standard ACSPL+ variables are fixed in all firmware versions, and you cannot
change the tag of a standard variable. For the tag of any given ACSPL+ variable see SPiiPlus
Command & Variable Reference Guide.

> User-Defined Variable Tags
A user-defined global variable can be declared with a tag.

The extended syntax of a variable declaration is:

global {int|real} tag tag_number variable_name [,variable_name, variable_name,...]

Where:

tag_number A positive integer to be associated with the variable(s).

variable_name A unique variable name, or list of names.

Only global variables can be declared with a tag. The following conditions also apply:

> The tag is not mandatory in the variable declaration. However, if the tag is not declared,
the variable cannot be accessed by tag.

> The value of TAG_NUMBER must be greater than 1000. Values below 1000 are reserved for
the standard ACSPL+ variables.

> The TAG_NUMBER value must be unique in the application.

> If more than one VARIABLE_NAME is included, when the program is compiled, the
controller builds a sequence of tag numbers: the specified TAG_NUMBER is attached to the
first variable in the list, TAG_NUMBER+1 value is attached to the second variable, TAG_
NUMBER+2 to the third, and so on.

3.6.5.2 GETVAR and SETVAR Functions

Description:

The GETVAR function serves for retrieving the value of a given variable. The SETVAR function
serves for setting the value of a given variable.

Syntax:

real GETVAR(tag_number[, index1, index2])

SETVAR(value, tag_number[, index1, index2])

59Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Arguments:

tag_
number

A positive integer associated with the variable.

index1,
index2

Integer indexes. The indexes must be omitted if the variable is scalar. The second
index must be omitted if the variable is one-dimensional array.

Comments:

The GETVAR function reads the current value of the variable and returns it as a real value. The
SETVAR function assigns the specified VALUE to the variable designated by TAG_NUMBER.

Though the VALUE argument and the return value are defined as real, the functions can be used
for integer variables as well. The controller implements all necessary transforms automatically.

The functions provide read/write access to all standard ACSPL+ variables and to those user-defined
variables declared with TAG.

3.7 ACSPL+ Functions

For a complete description of all ACSPL+ functions see the SPiiPlus Command & Variable Reference
Guide.

3.8 ACSPL + User-Defined Functions with Parameters

3.8.1 Introduction

Until version 3.02, the need to execute repeated sections of code was met by using subroutines,
implemented by the use of labels. This method had several shortcomings that are solved by
functions.

Functions allow the user to :

> Pass parameters

> Return a result value

> Implement safe parallel execution of code

> Declare local variables

Functions are sequences of code that can be executed.

3.8.2 Functiondefinition

3.8.2.1 Function Signature

A function is defined by several characteristics:

> Function return type – the type of value returned by the function. ACSPL+ functions may
return the following types:

INT – integer return type

REAL – fraction return type

VOID – no value return

60Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

> Function name – the unique name of the function, the function cannot share the same
name of a variable / other function that is defined in the same scope of visibility.

> Function parameters list – a list of type-name separated by comma (‘,’).

Functions may be declared in the scope of a struct

Example:

REAL VECTOR_CALC(REAL X_COORD, REAL Y_COORD, REAL V_ANGLE)

3.8.2.2 FASTCALL Functions

A FASTCALL function is a function that executes in a single cycle

EXAMPLE

REAL FASTCALL SAVESTATE(INT AXIS_INDEX)

If a function is defined as FASTCALL in function declaration, it must also be declared as FASTCALL in
the function implementation. In other words, function signature conformity is a requirement.

FASTCALL functions do not allow the following commands as they all add delays:

> DISP

> WAIT

> TILL

Calls to any of these functions will produce a compiler error.

Loops inside FASTCALL functions complete all iterations in a single cycle.E

An infinite loop in a FASTCALL function will execute indefinitely, as the
FASTCALL definition prevents the controller from moving on to the next buffer. In this
situation the controller will be completely frozen and will require a reset. Use loops
inside FASTCALL functions carefully.

Other commands, such as GETSP, can also cause the function to hold the processor past
the controller cycle time (CTIME) limit; it is the user’s responsibility to use these
functions correctly.

Calls to other functions are not allowed inside a FASTCALL function

3.8.2.3 Function visibility scope

A function can be defined as a local (for the buffer) function or a global (all buffers) function.

61Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.8.2.3.1 Local function

If a function is defined in a regular buffer, the function will only be visible inside that buffer.

Since a function cannot be used before its signature is available, it is necessary to declare the
function before use.

3.8.2.3.2 Global function

A function defined in the D-Buffer is available from any buffer (including the communication
terminal).

Functions that are defined in D-Buffer do not require declaration to be used in other buffers.

3.8.2.3.3 Function Declaration

A function defined in a local buffer can be declared anywhere before it is used, but the best
practice is to declare all functions in the top of the buffer.

A function declaration is just the function signature. Names specified in the function declaration
could later be changed in the function definition. Return-type, name of the function and function
parameter types in the definition must conform exactly to the function declaration.

EXAMPLES

1. Local function – the function is defined, and used only in buffer 0:

BUFFER 0:
!This is the function declaration
void myFunc(int param);
!The use of the function is only possible
!after the function has been declared
myFunc(25)
STOP
!This is the function definition
void myFunc(int param){
DISP "param = ", param
param = 3
RET
}

2. Global function

D-BUFFER:
!This is the function definition
void myFunc(int param){
DISP "param = ", param
param = 3
RET
}
BUFFER 0:
!The use of the function does not

62Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

!require declaration since the function
!was defined in D_Buffer
myFunc(25)
STOP

3.8.2.4 Function Code

In the function definition, after the function signature, the function code is written. The function
code starts with an opening curly bracket ‘{‘, and ends with ‘}’ (as in C/Java/C#, etc.).

All functions must be defined after a STOP command or the close of another function.

If the function code is reached not with a function code, but rather by running the buffer without a
stop command before the function definition – a runtime error will be thrown. Therefore, all
functions must be defined after the STOP command, and if a label is defined before a function
definition, it must return or stop.

Example

REAL VECTOR_CALC(REAL X_COORD, REAL Y_COORD, REAL V_ANGLE){
Real Aux
Aux = X_COORD * SIN(V_ANGLE)
DISP Aux
IF Aux > 5 RET 3.0 END !if the condition is not met, an error is thrown
}

3.8.3 FunctionParameters

A function can define several types of parameters.

3.8.3.1 Value Types

A value type is a parameter that is passed by value. The expression stated in the function call is
evaluated and the function is sent to the function execution.

Value types are: INT / REAL data types.

Example – param is passed by value

void myFunc(int param);
INT myVar = 16
! The value calculated by the expression is passed to the function
myFunc(myVar * 2)
STOP
void myFunc(int param){
DISP "param = ", param
param = 3
RET
}

63Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.8.3.2 Reference types

A reference parameter type is a parameter that is passed by reference. When the function is called
the variable is passed. Any change to the parameter will affect the variable passed to the function.

A reference parameter can only accept a variable (user defined) as the actual parameter.

The reference parameter type is marked by the reserved word “REF”. It can be of INT or REAL data
type.

Example – param is passed by reference

void myFunc(REAL REF param);
REAL myVar = 16.5
myFunc(myVar) ! myVar is passed to the function (and not its value)
STOP
void myFunc(REAL REF param){
DISP "param = ", param
param = 3.2 ! This line changes the value of myVar
RET
}

3.8.3.3 Composite Data Type Parameters

A function can receive composite data types (composite data structures). Composite data types are
passed by reference and any change to the parameter inside the function will change the variable
that was passed.

3.8.3.4 Array Type Parameters

Functions can accept arrays as parameters. When defining an array parameter the user can choose
between arrays with a single dimension or two dimensions.

All arrays have reference type semantics and any change to the array parameter will change the
array in the calling context.

3.8.3.4.1 Single Dimension Array

The user will only specify the data type (INT/ REAL) and leave the brackets empty (no size should
be specified). Such a parameter can also accept two dimensional arrays and use them as a single
dimension, although such usage must be implemented with great care.

Single dimension array parameters are not size validated at compilation (unlike regular arrays in
ACSPL+) and can accept any array of the same data-type (single / two dimensional).

If the user attempt to use an illegal index a runtime exception will be thrown.

Example – accept an array and change it

void printAndChangeArray(int arr(), int Size)
int myArray(3) = (66,77,88)
DISP myArray(0) !Print 66
printAndChangeArray(myArray, 3)
DISP myArray(0) !Print 88

64Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

STOP
!The function accepts an array and array size and puts the highest
!value in the first cell, if no positive value - put 0
void printAndChangeArray(int arr(),int Size){
if(Size = 0) RET end
INT i = 0
INT maxNum = 0
loop Size
DISP "arr(%d) = %d " ,i, arr(i)
if (arr(i) > maxNum) maxNum = arr(i) end
i = i+1
end
arr(0) = maxNum
RET
}

Example – single dimension array parameter accepts a two dimensional array, and uses it as a
single dimension array

void printAndChangeArray(int arr(), int Size)
int myArray(3) = (66,77,88)
int array2D(2)(2) = ((3,4),(5,6))
DISP array2D(0)(0) !Print 3
printAndChangeArray(array2D, 4)
DISP array2D(0)(0) !Print 6
STOP
!the function accepts an array and array size and puts the highest
!value in the first cell, if no positive value - put 0
void printAndChangeArray(int arr(),int Size){
if(Size = 0) RET end
INT i = 0
INT maxNum = 0
loop Size
DISP "arr(%d) = %d " ,i, arr(i)
if (arr(i) > maxNum) maxNum = arr(i) end
i = i+1
end
arr(0) = maxNum
RET
}

3.8.3.4.2 Two Dimensional Array

The user will specify only the data type (INT/ REAL) and the size of the second dimension (no size
should be specified for first dimension). Such a parameter can only accept two dimensional arrays
with the same second dimension size.

Validation of the second dimension is done in compile time if the value is known.

If the user attempts to use an illegal index, a runtime exception will be thrown.

65Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Example – accept a two dimensional array

void printAndChangeArray(int arr()(3), int Size)
int myArray(2)(3) = ((33,44,55),(66,77,88))
DISP myArray(0)(0)
printAndChangeArray(myArray, 2)
DISP myArray(0)(0)
STOP
!the function accepts an array and array size and puts the highest
!value in the first cell, if no positive value - put 0
void printAndChangeArray(int arr()(3),int Dim1){
INT row = 0
INT col = 0
INT maxNum = 0
loop Dim1
col = 0
loop 3
DISP "arr(%d)(%d) = %d " ,row, col, arr(row)(col)
if (arr(row)(col) > maxNum) maxNum = arr(row)(col) end
col = col+1
end
row = row +1
end
arr(0)(0) = maxNum
RET
}

3.8.4 Variable Definition

A function can define variables. Variables defined inside a function only exist from the moment
they are defined until the function returns.

Initialization of variables follows the syntax of regular ACSPL+ variable Initialization. Since function
variables exist only at runtime it is possible to initialize parameters according to runtime values.

Like ACSPL+ variables that are not explicitly initialized, local variables in functions will be initialized
to the default value of 0.

Arrays are not initialized to default values and must be explicitly initialized.

A function has access to the variables defined outside the function (local/ global/ constants). If a
variable is defined by the same name as an outside variable, hiding semantics will be used and any
mention of the shared name will refer to the local function variable.

A function can define variables of the following types:

> INT

> REAL

> INT/REAL arrays

Example – uninitialized array
void printAxisPos(int Axis);

66Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

int var1 = 3

printAxisPos(var1)
STOP
void printAxisPos(int Axis){
real arr(5)
DISP arr(3) ! Unknown value - arrays must be explicitly initialized
int var1 ! Hides the original var1
var1 = Axis - 1
DISP RPOS(var1)
ret
}

Example – initialization to runtime values

void SomeFunc(int Axis);
SomeFunc (5)
STOP
void SomeFunc (int Axis){
! Initialize parameters according to runtime value
real arr(3) = (RPOS(Axis), RVEL(Axis), RACC(Axis))
int var1 = PEXL(5)
DISP "line = %d, RPOS = %.3f", var1, arr(0)
ret
}

3.8.5 Return value

A function must end with a RET statement, a function execution that does not, will throw an
exception.

Functions that are not defined as VOID function must return a value as well. The expression after
the RET command will be evaluated and converted to the desired type if necessary.

If function execution ends without a return statement, an error will be thrown.

3.8.6 DISP command

It is illegal to call a function as a part of a DISP Statement.

DISP f1(33) ! function call is not allowed

3.8.7 Stack Memory

Functions use the stack memory that was allocated to the buffer where they are executed.

Every function call reduces the amount of available memory.

The amount of memory occupied by a function call is decided by:

> Return type

> Parameters

> Variables in the function

67Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

> Additional (8-12) bytes for software proposes

Example:

real func(real depth, real ref Axis){
int arr1(40)
real coaf = 8.8
RET 8.0
}

This function requires:

> REAL return type - 8 bytes

> Real parameter (8 bytes) + ref parameter (4 bytes) = 12 bytes

> Int array of size 40 (160 bytes) + real variable (8 bytes) = 168 bytes

> 8 additional bytes

Total = 196 bytes

So if this were a recursive function it would only able to get to a depth of about 80 calls before the
memory would run out.

When there is not enough memory to make additional calls, an error will be thrown.

3.8.8 Function Execution Time

A function should execute in the same number of cycles as the same code content written in the
buffer.

A FASTCALL function should execute in a single cycle.

3.8.9 FILL function

FILL function is an ACSPL+ function designed to fill an array of a given size with a predefined value.
The FILL function will work with arrays defined as function parameters or variables.

3.9 Expressions

3.9.1 General

An expression is a sequence of operators and operands that specify a calculation.

Expressions serve as building blocks for many ACSPL+ commands. For example, assignment
commands include expressions to the right of the equal sign:

V0 = V1 + 2*(V2 - V3)

When the controller executes a command that includes an expression, the expression is calculated
and the result is used as required by the command.

Complexity of expression ranges from the simplest expressions that include only one constant or
variable name, to extended formulae containing multiple operators and functions with several
levels of brackets. For example:

I99 = 5 5 is a simple expression

68Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

I98 = V0 V0 is a simple expression

I97 = ((I1-1)*sin(I2)+2)/5 Complex expression

3.9.2 CalculationOrder

In a complex expression, the following are the factors, listed in priority order, which determine the
order of calculation:

1. Brackets in the expression

2. Operator precedence

3. Order of operators in the expression (left-to-right order)

If the brackets do not unambiguously define the calculation order, then the operator precedence is
taken into account, and if the calculation order is still ambiguous then the left-to-right calculation
order is applied.

The operator precedence, summarizing them in order of precedence from highest to lowest is:

Table 3-2. Mathematical Operators

Operator Operation

. (dot) Bit selection

- ~ ^ Unary minus, Inversion, Logical not

* / Multiplication, Division

+ - Addition, Subtraction

<< >> Left shift, Right shift

= <> < > <= >= Compare

& | ~ Logical and bitwise AND, OR, XOR

If several operators appear on the same line or in a group, they have equal precedence.

3.9.3 Expression Type

The controller uses two types of numerical values;

> Integer values that are 4-bytes (32-bits) long and range from -2147483648 to 2147483647

> Real values that are 8-bytes long, 53-bits of mantissa and 11-bits of exponent with a range
of ±10-1023

Expression calculations produce either integer or real values.

Within the group of expressions that produce integer values, there is a subset, called logical
expressions, that consists of expressions that produce only two values: 0 or 1.

69Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

According to the type of result, an expression is defined as integer, real or logical. The controller
provides automatic type conversion of the result so that expression type required does not restrict
expression use. For example:

V0 = 0.01 * V1

In this assignment command, the integer variable V0 is to the left of the equals sign, while a real
expression is to the right of the equal sign. The controller automatically uses rounding type
conversion of the result obtained on the right side, so that the real value can be converted to an
integer variable and stored.

The types of operands and operators used in the expression define the expression type. Each
operator has an associated rule that defines the type of result according to the types of operands.
The rules are summarized in the following tables.

Integer (0,1) is specified for the operators that produce only two values: 0 or 1 (logical
result).

3.9.4 Operands

An operator requires one or two operands.

> An operator that requires one operand is called a unary operator. A unary operator is
placed before its operand.

> An operator that requires two operands is called a binary operator. A binary operator is
placed between its operands.

Unary operators:

Operator Type of Operand

integer real

- (unary minus) integer real

~ (inversion) integer integer

^ (logical not) integer (0,1) integer (0,1)

Binary operators:

Operator Type of Operand

integer-
integer

integer-
real

real-
integer

real-real

+ (addition) integer real real real

- (subtraction) integer real real real

70Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Operator Type of Operand

* (multiplication) integer real real real

/ (division) real real real real

& (and), | (or), ~ (xor) integer integer integer integer

<< (left shift) >> (right
shift)

integer integer undefined undefined

= , <>, <, >, <=, >=

(compare)
integer (0,1)

integer
(0,1)

integer
(0,1)

integer
(0,1)

. (bit selection) integer (0,1)
integer
(0,1)

integer
(0,1)

integer
(0,1)

Each operand can be either integer or real. If the operator requires, the controller automatically
converts the operand to the required type.

Operands can be one of the following:

> Constant
A constant can consist of any integer or real number. Integer constants can be presented
in decimal, hexadecimal and binary notation. Real constants can include a decimal point
and/or exponent.

> Symbolic constant
Symbolic constants are predefined in the controller. Each symbolic constant presents an
integer number.

> Scalar variable name or Array name with indexing
A variable name is a name of any standard or user-defined variable. If a user-defined name
is used, it must be declared before being used in the program. If the variable presents an
array, the name must be fully indexed to specify one element of the array.

> Function call or Expression
Any ACSPL+ function can be used in an expression. Using expression as an operand of
other expression provides unlimited variety of expressions. In many cases expression used
as operand must be enclosed in brackets. For example:

(V0+5)*7 Expression V0+5 is the left operand of multiplication

(V0+5)*(I88+3) Both operands of multiplication are expressions

V1*3 + I2*6 Operands of addition are expressions V1*3 and I2*6

The following sections provide further elaborations on the operands and operators.

3.9.4.1 Arithmetical Operators

Arithmetical operators provide four arithmetical operations. The arithmetical operators are:

71Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

> + (addition)

> - (subtraction)

> * (multiplication)

> / (division)

Addition, subtraction and multiplication calculate an integer result if both operands are integers,
and a real result if at least one operand is real.

Division always calculates real results, for example:

real Var Declare real variable VAR

Var = 5/4 Assigns 1.25 to variable VAR.

3.9.4.2 Compare Operators

Compare operators are:

> = (equal to)

> <> (not equal to)

> > (greater than)

> >= (greater than or equal to)

> < (less than)

> <= (less than or equal to).

Compare operators work with any combination of integer and real operands. Compare operator
results are always the integers 0 or 1. A positive result of a comparison provides value 1, while a
negative result provides value 0.

Compare operators are typically used in a variety of contexts, for example:

if V0 > 5 ...

while I99 <> 0 ...

>on IN0.5 = 1 ...

Because they always produce an integer result, compare operators can be used in arithmetical
calculations, for example:

V1 = (V0 = 5) * V4

The expression in parenthesis, V0 = 5, results in 1 if V0 is equal to 5 and results in 0 if V0 is not equal
to 5. Therefore, this command assigns V1 with the current value of V4 if V0 equals 5, and assigns V1
with 0 if V0 has any other value.

3.9.4.3 Bitwise and Logical Operators

Bitwise and logical operators are:

> & (and)

> | (or)

> ~ (xor - exclusive or)

72Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

The result of a bitwise operator is always an integer. If an operand of a bitwise operator is real, the
controller automatically converts it to an integer before the operation.

Bitwise means that the operation is executed separately on each bit of the operand. Each integer
operand is considered as a set of 32-bits. Bit 0 of the left operand is combined with bit 0 of the
right operand to produce bit 0 of the result.

The following example illustrates the AND operator. Both operands and the result are considered
as sets of 32-bits.

First operand 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Second operand 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0

Result 0 0 0 1 0 1 1 0 0 0

If both operands are logical, i.e., have only values of 0 or 1, the result is also logical. In this case the
operators can be treated as logical AND, OR and XOR. For example, the following condition:

(V0 = 5) & (I30 = 0)

is satisfied only if V0 is 5 and I30 is 0 simultaneously.

3.9.4.4 Unary Operators

The unary operators are applied only to the operand. The unary operators are:

> - (unary minus) – Negates its operand, either integer or real. The type of result follows the
type of operand. For example:

V0 = -V1 V0 is assigned with the negative value of V1

> ~ (inversion) – Provides bitwise inversion of its operand. If the operand is real, the
controller provides automatic conversion to integer before the operation. The result is
always an integer.

> ^ (logical not) – Accepts either an integer or real operand and calculates an integer result.
The result is 1 if the operand equals to 0, and is 0 if the operand is non-zero.

The following two examples illustrate the difference between the ~ and ^ operations:

X 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0

~X 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

^X 0

X 0

~X 1

^X 0

Inversion is a bitwise operator, while the logical not applies to the entire value.

73Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.9.4.5 Bit Selection Operator (Dot)

Bit selection operator (dot) extracts one bit from an integer number. The result is always an integer
and can yield only two values: 0 or 1.

The operands can be integer or real. The controller converts a real operand to integer before the
operation.

The left operand supplies a number from which a bit will be extracted. The number is treated as a
set of 32 bits numbered from 0 to 31. Bit 0 is the least significant bit.

The right operand supplies the ordinal number of the bit to be extracted. The value of the right
operand must be in the range from 0 to 31.

Typical use of the bit selection is for the flag variables, such as MST, which are treated as a collection
of one-bit flags. For example, the following command

till ^MST(0).#MOVE

provides waiting for the end of the 0 axis motion. The symbolic constant #MOVE provides selection
of bit 5 of the MST (Motor State) variable. The fifth bit of MST reflects the state of the motion: it is 1
while the axis is in motion, and is 0 while the axis is idle.

3.9.5 Character Constants

An ASCII character enclosed in single quotation marks is interpreted as integer constant and can be
used in assignment and expressions as a normal integer constant. For example:

int Char
Char = 'A'

assigns value 65 (or 0x41, which is the numerical equivalent of A) to the variable: CHAR.

3.10 ACSPL+ Commands

The complete ACSPL+ command set is detailed in the SPiiPlus Command & Variable Reference
Guide. This section addresses certain ACSPL+ commands with expanded information on their use.

3.10.1 Assignment Command

The Assignment (=) command is used to give a variable a value.

Syntax:

left-term = expression

left-term can be:

> Standard or user variable

> An element of a ACSPL+ or user array

> One bit of integer variable or integer array element

Assigning to an ACSPL+ variable is limited by the following rules:

> Assignment to read-only variable (for example, FPOS) is prohibited

> Assignment to a protected variable (for example, ERRI) is allowed in only in the
Configuration mode.

74Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

expression can be of integer or real type. By using different operators and parenthesis, an
unlimited number of expressions can be constructed.

After assignment, the previous value of the variable is replaced by the new value.

The controller executes assignment commands in the following order:

1. Calculate expression

2. Convert the type of calculated value to the type of left-term (if the types differ)

3. Assign the result to left-term

The following sections explain assignment for specific types of left-term.

3.10.1.1 ACSPL+ Variable Assignment

ACSPL+ variables can be used in the left side with the following restrictions:

> The variable must not be read-only. Using read-only ACSPL+ variable in the left side causes
a compile-time error.

> If it is a protected variable, protection is checked when the command is executed. In
protected mode, the assignment fails, producing a run-time error (3077).

Examples:

The following command tries to assign a read-only variable, and will cause a compilation error:

FPOS(0) = 0

The following command assigns the protected variable FMASK.

FMASK(0) = 0

is a legal command; however, when the command executes, if the controller is in the Protected
mode, the assignment fails and produces a run-time error.

> If the ACSPL+ variable is scalar, no indexing is required.

> If a ACSPL+ variable is an array, explicit or implicit indexing is required. For indexing of
ACSPL+ variables see Explicit Indexing through Postfix Indexing of Standard Arrays.

Examples:

VEL(0) = 1000 Assign 1000 to 0 axis default velocity - explicit indexing
VEL0 = 1000 The same as above - postfix indexing
Var1 = FPOS(0) Assign to user variable
Var2(0)(5) = 200 Assign to element of user array
OUT0.5 = 1 Assign to digital output 5

3.10.1.2 User Variable Assignment

User local and global variables must be declared before they can be used in an assignment
command.

> Explicit indexing only is allowed for user array variables.

> If a user variable is scalar, no indexing is required.

> If a user variable is one-dimensional array, it requires one index. Two-dimensional arrays
require two indexes.

75Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Examples:

global int Int_Scalar INT_SCALAR is declared as a global
integer variable

local real Real_Array1(20), Real_Array2(10)(10) REAL_ARRAY1 is a local real array
of 20 elements.

Array2(10)(10) REAL_ARRAY2 is a local real array of
size 10x10.

Int_Scalar = 5 Assign 5 to INT_SCALAR
Real_Array1(2) = 5*Int_Scalar Calculate INT_SCALAR multiplied by 5

and assign the result to the third
element of REAL_ARRAY1

Real_Array2(Int_Scalar)(Int_Scalar+2) = 1000 Assign 1000 to the element of
REAL_ARRAY2 with first index
equal to INT_SCALAR and the second
index equal to INT_SCALAR+2

3.10.1.3 Bit Assignment

You use a bit specifier, added to an integer variable or integer array element, to provide
assignment to a single bit. The syntax of bit specifier is

VAR.bit_specifier = expression

The EXPRESSION must calculate to an integer number that provides an ordinal number. Typically the
EXPRESSION is simply a constant that specifies the number. However, an arbitrary expression can
be specified that provides calculation of the bit value in run time.

In the controller, an integer number is presented by 32 bits. The bits are numbered from 0 to 31.
The least significant bit is bit 0; therefore, BIT_SPECIFIER must be an integer number in the range 0-
31.

A bit can have only two possible values: 0 (false) or 1 (true), while the EXPRESSION result, which
defines the bit value, can be any value. Assignments convert the value as follows:

> If the value is zero, the bit is set to zero

> If the value is non-zero, the bit is set to one

Although bit assignments are applicable to any integer variable or array element, they are mainly
used for changing flag variables and output bits.

Examples:

OUT0.13 = 1 Set output 13 to one.
IST(0).#IND = 0 Reset index flag of 0 axis.
FMASK(0).#DRIVE = 1 Enable Drive Fault exception.

The command is allowed only in the Configuration
mode.

3.10.1.4 Type Conversion

Left-side terms and right-side expressions may be of different types: integer or real in any
combination. (The special case of Bit assignment is handled differently, as is described in Bit
Assignment).

76Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

If the types differ, the type of calculated right-side expression is automatically converted to the
type of left-side term. There are two possible conversions:

> Integer to real; conversion is exact.

> Real to integer; conversion is not always exact. A real number is rounded to the closest
integer.

3.10.2 Synchronization Commands

Synchronization commands provide delay in program execution for a specified number of
milliseconds or until a specified condition is satisfied. The following synchronization commands are
available:

> WAIT

> TILL

3.10.2.1 WAIT Command

Description:

The WAIT command delays program execution for a specified number of milliseconds.

Syntax:

WAIT expression

Comments:

The WAIT command executes in the following order:

1. Calculate expression. The result is the required delay time in milliseconds.

2. Delay the program for the calculated amount of time.

Typically the expression is specified as a constant that provides a constant delay time. However, in
some cases a variable delay time may be needed as shown in the example.

If the wait command is located in a separate line, the total execution time of this line is the delay
time plus the standard one line execution time as defined by the PRATE variable, which defines the
program execution rate (see SPiiPlus Command & Variable Reference Guide for details on the
PRATE variable).

Example:

The following example is a program that tests the WAIT command:

V0 = 0 Assign 0 to V0
loop 100
V1 = TIME
WAIT V0
DISP TIME - V1
V0 = V0 + 1
END End loop
Stop End of program

If the controller cycle is 1 millisecond and PRATE is 1, the program displays a list of numbers from 2 to
101. The first number, 2, corresponds to the standard execution time of two lines, because the first

77Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

time the additional delay provided by the WAIT command is zero. Each loop executed adds one to
the requested delay, therefore the displayed time grows correspondingly.

3.10.2.2 TILL Command

Description:

The TILL command delays program execution until a specified expression produces a non-zero
(true) result.

Syntax:

TILL expression [, timeout]

Comments:

The optional TIMEOUT argument specifies a timeout for the TILL command in milliseconds.

The TILL command executes in the following order:

1. Calculate expression.

2. If the expression result is non-zero, go to the next command.

3. If the expression result is zero, wait one controller cycle and repeat the TILL command
execution.

Examples:

The following fragment demonstrates a typical use of till command that provides waiting for a
specific state before the execution of the next command:

PTP 0, 2000 Start positioning of the 0 axis to absolute point
2000

TILL ^AST(0).#MOVE Wait until the 0 axis motion finishes

The bit: AST(0).#MOVE is raised as long as the 0 axis is involved in a motion. Inversion of the bit
(^AST(0).#MOVE), causing the bit to become non-zero, occurs when the motion ends for any
reason. Therefore the above TILL command provides a delay of execution of the next command
until the motion is over.

In the following example, the program starts a data collection and then a motion. The feedback
position is sampled with a period of 1 millisecond and stored in the data array. After the data
collection finishes, the data array contains a transient process of ptp motion. Synchronous data
collection used in the example displays its state in the AST(1).#DCit which is raised as long as the
data collection is in progress. The collected data can be safely used only after the data collection
process has terminated. Her , the TILL command validates that both the motion and the data
collection are over:

global real Data(1000) Declare global real array Data of
1000 elements

DC/s 1, Data, 1000, 1, FPOS(1) Start data collection of FPOS(1) to
array DATA, 1000 samples, 1ms period

PTP 1, 2000 Start positioning of the 1 axis to
absolute point 2000

78Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

TILL ^AST(1).#MOVE & ^AST(1).#DC Wait until both the 1 axis motion
and the data collection finish

The following example provides the 3 axis motion in negative direction until a general purpose
input becomes active and then terminates the motion:

JOG 3, - Start jog motion of the 3 axis in negative direction
TILL IN0.5 Wait until input 5 is activated
HALT 3 Terminate the 3 axis motion

In the following example a general purpose output must be activated 25 millisecond before the
motion end. The ACSPL+ GRTIME variable (for details on the GRTIME variable, see The GRTIME
Variable) contains the estimated time that remains to the motion end.

PTP 0, 10000 Start positioning of the 0 axis to
absolute point 10000

TILL GRTIME(0) <= 25; OUT0.4 = 1 Activate output 4 25 milliseconds
before the motion ends.

The output activation, OUT0.4 = 1, is placed in the same line as the TILL command in order to avoid
one controller cycle delay between program lines.

3.10.3 Autoroutines

The technique of autoroutines is similar to hardware interrupts. In distinction to routines that must
be explicitly executed (by way of the CALL command), the autoroutine is automatically executed
when a specific condition is satisfied. The routine interrupts the currently executing program,
executes the commands specified in the autoroutine body, and then returns control to the
interrupted program.

3.10.3.1 ON Command

Description:

The ON command flags the routine as an autoroutine and specifies the condition upon which the
execution of the routine is based.

Syntax:

ON expression

Comments:

The value of EXPRESSION defines the condition. The condition is considered true if the expression
calculates to a non-zero result. A zero result corresponds to a false condition, and the routine is not
executed.

The controller never executes the ON command directly.

79Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

If the program execution flow hits an ON command, the controller asserts a run time
error and aborts the program. Therefore you must either end the program before the
ON command, or use an unconditional GOTO command to skip over the routine.

Instead of direct execution, the controller registers an autoroutine when the program containing
the routine is compiled. Then the controller calculates the expression each controller cycle in
parallel with executing ACSPL+ programs. If the expression calculates to a non-zero value, the
controller interrupts the ACSPL+ program being executed in the same buffer where the
autoroutine is located, and transfers the execution point to the autoroutine. If no ACSPL+ program
is executed in the buffer, the controller does not interrupt any program and simply starts the
autoroutine execution.

The controller implements edge-detection in autoroutine condition verification. If a condition
becomes true, the controller activates the autoroutine only once. If the condition remains true
afterwards, the controller does not activate the autoroutine again. The condition must become
false and then become true again in order to activate the autoroutine again.

3.10.3.2 Autoroutine Body and Execution

The autoroutine body is a sequence of ACSPL+ commands that starts from the command following
the autoroutine header. The body continues until it reaches a RET command.

The RET command terminates the autoroutine execution and transfers execution control back to
the interrupted program. If no program was interrupted, the RET command simply terminates the
program.

As explained above, an autoroutine interrupts the program in the host buffer, but is executed in
parallel with programs that are executed in other buffers.

You can specify different execution rates (number of lines executed per one controller cycle) for
regular programs and for autoroutines in the same buffer. The ACSPL+ PRATE array contains
elements for each program buffer and specifies the execution rate for regular programs. The
ACSPL+ ONRATE array specifies the execution rate for autoroutines.

For example, if you have configured the controller so that PRATE(2) is one, but ONRATE(2) is four,
the program in buffer 2 will be executed one line per one controller cycle, and any autoroutine
specified in buffer 2 that interrupts the program will be executed four lines per one controller
cycle. When the RET command that terminates the autoroutine is executed, the controller switches
back to the rate of one line per one cycle.

3.10.3.3 Autoroutine and the Host Buffer Interactions

An autoroutine can reside in any program buffer. The controller examines the conditions each
controller cycles for all compiled autoroutines in all buffers.

There are, however, specific autoroutine-host buffer interactions:

> The buffer’s local variables can be used in the autoroutine condition as well as in the
autoroutine body only in an autoroutine defined in the host buffer. However, all ACSPL+
and user global variables can be used in any buffer.

80Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

> When the condition is satisfied, the autoroutine interrupts only the program executed in
the host buffer. Programs that are concurrently executing in other buffers continue
executing in parallel with the autoroutine. When activated, the autoroutine prevents
activation of other autoroutines in the same buffer. A program that is executed in any
other buffer can be interrupted by an autoroutine specified in its own host buffer.

The following approaches are available to you for defining a set of autoroutines and assigning
them to one or more buffers:

> A specific autoroutine occupies a separate buffer with no other program or autoroutine in
the buffer. Activating and executing the autoroutine has no direct affect on other
programs or autoroutines. This approach is the most suitable for an autoroutine that takes
a long time to execute, because a large autoroutine that shares a buffer with another
program or autoroutines would prevent the activity of other programs or autoroutines
during its execution.

> Several autoroutines are specified in one buffer with no regular program in the same
buffer. In this case the activation of an autoroutine does not interrupt any program, all
programs executed in the other buffers continue executing concurrently. An activated
autoroutine prevents the activation of another autoroutine in the same buffer until its
termination.

> One or more autoroutines are specified in a buffer along with a regular program. In this
case the activation of the autoroutine interrupts the program execution. This approach is
the most suitable if the program and the autoroutine are closely related and must use the
same local variables. For example, the autoroutine processes the failure conditions for the
program, and must interrupt the program if a failure occurs.

3.10.3.4 Examples

The following fragment demonstrates a typical use of autoroutine for processing the controller
faults. The autoroutine provides an error message when the Drive Alarm of 0 axis occurs:

ON FAULT(0).#DRIVE Activate autoroutine when bit FAULT(0).#DRIVE
changes from 0 to 1

DISP "X Drive Alarm" Display an error message
RET End of autoroutine

The following autoroutine responds when either the Left Limit or Right Limit are activated:

ON FAULT(1).#LL | FAULT(1).#RL Activate autoroutine when the right
or left limit bit is activated on
the 1 axis.

DISP "1 axis Limit Switch activated" Display an error message
RET End of autoroutine

The following example assumes that an extra ventilator must be activated when the motor
overheat input signal is activated for the axis 2. The ventilator is controlled by the output bit:
OUT0.4. The ventilator must be disabled when the signal returns to inactive state.

81Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

ON FAULT(2).#HOT Activate autoroutine when bit FAULT(2).#HOT changes
from 0 to 1.

OUT0.4 = 1 Set output 4 to 1
RET End of autoroutine.
ON FAULT(2).#HOT Activate autoroutine when bit FAULT(2).#HOT changes

from 1 to 0.
OUT0.4 = 0 Set output 4 to 0
RET End of autoroutine.

All bits, not only faults, can be used in autoroutine conditions. Assuming that output OUT0.6 (of the
0 axis) is connected to a LED indicator, the following autoroutines signals the motion state bit to
activate the indicator, and deactivate it when the 0 axis is no longer in motion:

ON MST(0).#MOVE When the MST(0).#MOVE bit changes from 0 to 1
(signaling that the X axis is moving)

OUT0.6 = 1 Set output 6 to 1 (turns on the LED)
RET End of autoroutine.
ON ^MST(0) #MOVE When the MST(0).#MOVE bit changes from 1 to 0

(signaling that the X axis is no longer moving)
OUT0.6 = 0 Set output 6 to 0 (turns off the LED)
RET End of autoroutine

The condition of an autoroutine can be any type of expression, not only bit verification. The
following autoroutine provides an alarm message if a fault occurs in the controller:

ON S_FAULT When a fault occurs
DISP "Something happened" Display an error message
RET End of autoroutine

The above autoroutine displays the alarm message only on the first fault. If one fault bit is already
raised, and another fault occurs, the second fault does not cause the alarm message.

The ACSPL+ MERR (motor error) array can be used for motor failure processing. While a motor is
enabled, the corresponding element of MERR is zero. If a motor is disabled, the element stores the
reason why the motor was disabled. Codes greater than or equal to 5010 correspond to fault
conditions. The following autoroutine displays a message when the controller disables the 0 axis
due to any fault.

ON MERR(0) >= 5010 When the 0 axis motor is disabled
DISP "Motor 0 was disabled. Error code: ", MERR(0) Display a message stating that the motor

was disabled, and the error code of the fault
RET End of autoroutine

The ACSPL+ AERR array can be used to detect abnormal motion termination.

The ACSPL+ MERR and AERR variables expose only those faults that cause motor disable or
abnormal motion termination.

82Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

3.10.4 Program Management Commands

Program management commands are used for controlling the execution of a program. As any
other command, a program management command can be either executed immediately as an
Terminal Command, or stored in a buffer. Using program management commands within a
program provides the ability to create a master program that manages execution of other
programs.

3.10.4.1 START Command

Description:

The START command activates program execution in a buffer.

Syntax:

START buffer_number, label_name

Comments:

The command specifies a target buffer (BUFFER_NUMBER) that contains the program that must be
activated. The BUFFER_NUMBER argument can be a constant or expression that calculates to
integer number. The specified or calculated buffer number must fall into the range 0 to 9. If the
number is out of range, error 3052 is generated.

The LABEL_NAME argument is a label in the program (Names: Variable and Label). Execution starts
from that label.

If the START command is executed from a program, the specified BUFFER_NUMBER must be
different from the buffer that contains the current program because a program cannot start itself.
It will be aborted, generating error 3044.

The START command executes successfully if the target buffer is loaded with a program, compiled,
but not running. Otherwise, the START command causes a run-time error and aborts the current
program.

The program activated by the START command executes concurrently with the program containing
the START command, and other active programs.

Examples:

The following fragment starts the program in buffer 2 from label PSTART:

START 2, Pstart Start executing buffer #2 at the line labeled PSTART.

The following Terminal command displays change in buffer state after the START command was
executed:

?2 Querying status of buffer #2.
Buffer 2: 192 lines, running in line 153 Response to query.

3.10.4.2 STOP and STOPALL Commands

Description:

The STOP command terminates program execution in a buffer. The STOPALL command terminates
all currently executing programs except the program that issued the command.

83Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Syntax:

STOP [buffer_number]

STOPALL

Comments:

BUFFER_NUMBER is the buffer designator (an integer between 0 and one less than the total
number of Program Buffers in the system)

The STOP command without BUFFER_NUMBER affects the currently executing program in the
buffer and is the normal method of program termination.

The STOP command with BUFFER_NUMBER terminates a program in the specified buffer. A master
program that manages the whole application can use this command in order to terminate a certain
activity.

The STOPALL command executed by a program terminates all other concurrently executed
programs, but the program itself continue executing.

After termination by the STOP or STOPALL command, a program remains in the compiled state.
Therefore, if the program contains autoroutines, the autoroutines can be activated after the
program termination whenever its condition is satisfied.

Examples:

The following command terminates the current program:

STOP

The following command terminates the program only if the 0 axis is disabled:

IF ^MST(0).#ENABLED STOP; END

The following command terminates the program executed in buffer 3:

STOP 3

The following command executed in buffer 0 terminates the programs currently executed in all
buffers except buffer 0:

STOPALL

The following Terminal command displays change in buffer state after executing the STOP
command:

?3 Querying status of buffer #3
Buffer 3: 35 lines, compiled, not running Response to query.

3.10.4.3 PAUSE and RESUME Commands

Description:

The PAUSE command suspends program execution in a buffer. The RESUME command resumes
execution of a suspended program.

84Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Syntax:

PAUSE buffer_number

RESUME buffer_number

Comments:

The PAUSE command suspends the program executed in the specified buffer (BUFFER_NUMBER). If
no program is executed in the buffer, the command has no effect.

The RESUME command resumes execution of the program suspended in the specified buffer. If the
program was not suspended, the command has no effect.

Examples:

The following command suspends the program currently executed buffer 0:

pause 0

The following Terminal command displays change in buffer state after executing the pause
command:

?0 Querying status of buffer #0.
Buffer 0: 97 lines, suspended in line 69 Response to query.

The following command resumes program execution in buffer 0:

resume 0

The following Terminal command displays change in buffer state after executing the resume
command:

?0 Querying status of buffer #0.
Buffer 0: 97 lines, running in line 83 Response to query.

3.10.4.4 ENABLEON and DISABLEON Commands

Description:

The ENABLEON command enables the activation of an autoroutine in a buffer. The DISABLEON
command disables the autoroutine activation in a buffer.

Syntax:

ENABLEON buffer_number

DISABLEON buffer_number

Comments:

The commands alter the NOAUTO bit in the ACSPL+ PFLAGS variable that controls autoroutine
activation (see SPiiPlus Command & Variable Reference Guide for details on the PFLAGS variable).

If the bit is reset, the controller starts verifying the condition of an autoroutine and can activate the
autoroutine as soon as the buffer is compiled. Setting the bit prevents the autoroutine activation
even if the buffer is compiled and the condition is true.

85Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

Examples:

The following dialog shows the effect of the commands on the buffer state:

DISABLEON 0 Disabling autoroutines in
buffer #0

?0 Querying status of buffer #0.
Buffer 0: 97 lines, compiled, not running, autoroutines disabled Response to query
ENABLEON 0 Enabling autoroutines in

buffer #0
?0 Querying status of buffer #0.
Buffer 0: 97 lines, compiled, not running Response to query.

86Version 3.02

ACSPL+ Programmer's Guide
3. ACSPL+ Overview

4. ACSPL+ Motion Programming
This chapter provides practical details for using ACSPL+ to program motion. It covers the specific
commands for programming motion. It should be used in conjunction with the SPiiPlus Command &
Variable Reference Guide.

4.1 Axis/Motor Management Commands

Axis/Motor Management commands comprise various operations that change the state of the
motors and the axes, establish relations between the motors and the axes, and manage executed
motion.

4.1.1 ENABLE&DISABLE Commands

The ENABLE command activates one or more motors and drives. After the ENABLE command, the
motor starts following the reference and physical motion is available.

The DISABLE command shuts off one or more drives and motors. After the disable command the
motor cannot follow the reference and remains idle.

Syntax:

ENABLE axis_specification

DISABLE axis_specification [, reason]

In simple cases AXIS_SPECIFICATION is a single axis like 0 or 13, or a string consisting of axis enclosed
in parentheses and separated by commas, for example: (0, 2, 13), or the keyword ALL (specifying all
available non-dummy axes).

The ENABLE and DISABLE commands affect all specified axes.

The optional second parameter of the DISABLE command (REASON) must be an integer constant or
expression and specifies a reason why the motor was disabled. If the parameter is specified, its
value is stored in the MERR variable. If the parameter is omitted, MERR stores zero after the disable
operation.

A reason stored in the MERR variable is cleared by the FCLEAR (FCLEAR Command) or ENABLE
command.

As long as the motor is enabled, the controller provides the following:

> Holds output ENA (enable drive) in active state.

> Calculates PE (non-critical position error).

> Performs closed loop control (for servo motors).

> Examines conditions of PE and other faults and raises the corresponding fault bits if
required.

The following variables/bits can modify execution of the enable command:

ENTIME Defines the time (or maximum time) of ENABLE execution

MFLAGS.#ENMOD Defines the mode of ENABLE execution

87Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

FMASK.#DRIVE Defines if the drive alarm fault is processed

SAFINI.#DRIVE Defines an active level of the drive alarm safety signal

If the MFLAGS.#ENMOD bit is 1, the ENTIME value defines the time of enable execution. In executing
the ENABLE command, an ACSPL+ program always waits for ENTIME milliseconds. If then the drive
alarm fault is zero, the ENABLE command is considered successful; otherwise the ENABLE
command fails.

If the MFLAGS.#ENMOD bit is 0, the ENTIME value defines the maximum time allotted for ENABLE
execution. Executing ENABLE, an ACSPL+ program monitors the drive alarm input signal. As soon as
the drive alarm becomes inactive, the ENABLE command finishes execution with success. If the
drive alarm signal does not change to inactive state within ENTIME milliseconds, the ENABLE
command fails.

Examples:

ENABLE 0 Enable axis 0
ENABLE (2,3) Enable axes 2 and 3
DISABLE 2,5011 Disable axis 2, store 5011 as a disable reason. Code 5011

corresponds to left limit error, therefore the 2 axis
motor will be reported as disabled due to fault involving
left limit.

DISABLE (2,3) Disable motors of axes 0 and 3

4.1.2 COMMUT Command

The COMMUT command performs autocommutation and may be used when the following
conditions hold true:

> The motor is DC brushless (AC servo)

> The motor is enabled

> The motor is idle (not moving)

Versions 2.60 and later support COMMUT command in GANTRY mode. Commutation of
the primary axis will automatically trigger commutation of the secondary axis.

The COMMUT command is used in autocommutation-based startup programs.

The command will operate properly only after the SPiiPlus MMI Adjuster has been used to:

> Perform initial commutation adjustment

> Adjust the motor properly

> Save the adjustment parameters to the controller’s flash memory.

Commutation using the SPiiPlus MMI Adjuster is described in depth in the SPiiPlus MMI Application
Studio User Guide.

88Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Motor movement during commutation very much depends on the motor drive settings. The
COMMUT command will not operate properly if the SLPKP variable is set to zero, or the integrator is
very low.

Syntax:

COMMUT axis, [excitation_current,] [settle_time,] [slope_time][gantry_commut_delay]

Arguments

axis Specifies the motor to start commutation.

excitation_
current

Specifies the motor current used during autocommutation. The current is
specified in a percentage of the maximal value. The controller restricts the
actual current value by the XCURI value. The argument can be omitted in
which case the default value is 0.98*XRMS. You may wish to specify a greater
value if the axis static friction is high, or a lower value if the axis static friction is
low.

settle_
time

Specifies the settling time in the autocommutation process in milliseconds.
The argument can be omitted in which case the default value is 500
milliseconds. You may wish to specify a greater value in case of low-
bandwidth or slow damping systems.

slope_
time

Specifies the time that the excitation current rises from zero to the desired
value. The argument can be omitted in which case the default value is 0
providing an immediate build-up of the excitation current. Slope time is
required only in special cases and it is usually recommended to omit this
argument in which case the excitation current is built instantly.

gantry_
commut_
delay

Optional – can be used only in Gantry mode. It defines the delay time in
milliseconds after the commutation of the primary axis is completed and
before the commutation of the complimentary axis begins. The default value
is 500 msec.

The COMMUT command executes the autocommutation algorithm three times for verification and
elimination of unstable equilibrium. The approximate execution time of the command is therefore
3*(SETTLE_TIME + SLOPE_TIME).

It should be noted that:

> In air bearing systems a lower EXCITATION_CURRENT may be required.

> In high friction systems a higher EXCITATION_CURRENT value is required.

The EXCITATION_CURRENT should be the same as that which you determined in the initial
commutation adjustment process.

The SETTLE_TIME parameter determines the settling time for the autocommutation process
initiated by the COMMUT command. The entire autocommutation process lasts approximately three
times longer, since the command executes the algorithm three times for verification.

89Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

In low-bandwidth systems (high inertia, etc.) a higher value may be required.

The SETTLING_TIME should be the same as that you have determined in the initial commutation
adjustment process.

4.1.3 KILL and KILLALL Commands

The KILL command causes one or more motors to terminate motion using a second-order
deceleration profile. The deceleration value is specified by the KDEC variable (see SPiiPlus
Command & Variable Reference Guide).

The KILLALL command provides kill operation for all motors.

The commands have the following syntax:

KILL axis_specification [, cause]

KILLALL [, cause]

In simple cases AXIS_SPECIFICATION is a single axis like 0 or 13, or a string consisting of axis enclosed
in parentheses and separated by commas, for example: (0, 2, 13), or the keyword ALL (specifying all
available non-dummy axes).

The optional CAUSE argument, specifying a cause why the motor was killed, must be an integer
constant or expression that results in an integer. If the parameter is specified, its value is stored in
the MERR variable. If the parameter is omitted, the MERR stores zero after the kill operation.

If several sequential kill operations specify different causes for the same motor, only the first
CAUSE will be stored in MERR and all subsequent causes will be ignored.

A CAUSE stored in the MERR variable is cleared by the FCLEAR (see FCLEAR Command) or ENABLE
command.

Each motor specified in a kill operation decelerates individually using its KDEC deceleration value.

Any motion related to the killed motors is terminated. If a motion involves several motors and only
some of the motors are specified in a kill command, all other motors decelerate synchronously
using a third-order profile and the DEC deceleration value (same behavior as with the HALT
command, HALT Command).

The following examples illustrate KILL execution under different conditions. (Some of the
examples involve a default connection. This is a condition where a motor depends only on the
corresponding axis and the difference between motor and axis can be ignored. For more
information about default and non-default connections, see CONNECT Command and DEPENDS
Command.)

> KILL command with motor idle
Assume, none of the currently executed motions involves the 2 axis motor.
The command KILL 2 does not affect the motor in any way.
The command KILL 2,6100 does not affect the motor, but stores code 6100 (user-defined
cause) in the MERR(2) variable. The code is stored only if at this moment the variable is
zero, otherwise the command does not overwrite the previously stored code and the
cause specified in the command is ignored.

90Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

> KILL command with single-axis motion, default connection
Assume, axis 1 executes motion PTP/V 1,6000,20000.
Once KILL 1 is executed, the motor starts decelerating from its instant velocity using
constant deceleration value specified by the KDEC(1) variable. Deceleration time is given
by:
V1 / KDEC(1)
where V1 is the instant velocity at the moment of the KILL command. V1 is not necessarily
20000 as specified in the motion command, it can be lower if the KILL command is
executed in acceleration or deceleration phases of the motion.
Typically, the motor finishes the KILL process and stops before it reaches the final motion
point of 6000. However, if KDEC(1) < DEC(1) (not recommended in most applications), the
motor can overrun the final point.

The motion is considered to continue execution as long as the kill process is executed. Bit AST
(1).#MOVE remains 1 while the motor is decelerating and drops to 0 once the motor reaches
zero reference velocity. Bit MST(1).#MOVE also remains 1 while the motor is decelerating but
drops to 0 only when the motor reference velocity is zero and the motor position error PE(1)
remains less than TARGRAD(1) for more than SETTLE(1) milliseconds.

> KILL command with several single-axis motions, default connection
Assume, each of the axes 0, 2, 4 executes independent single-axis motion.
The command KILL (0,2,4),6088 is equivalent to KILL 0,6088; KILL 2,6088; KILL 4,6088 and
acts on each motion independently. Each motor uses its own component of KDEC and the
time of the KILL process is different for the motors.
The reason for the KILL, 6088 (user-defined code), is stored in MERR(0) (for the 0 axis),
MERR(2)(for the 2 axis) and MERR(4) (for the 4 axis). However, if at the moment one of
these variables contains a non-zero value, the value is not overwritten and the previously
stored cause is retained.
The command KILL 4 (again with default connection) kills the axis 4 motor and terminates
the axis 4 motion, but does not affect motors and motions of axes 0 and 2.

> KILL command with multi-axis motion, default connection
Assume, motion MPTP (0,1,4) is executed.
The command KILL 1 causes the axis 1 motor to start decelerating from its instant velocity
using the constant deceleration value specified by the KDEC(1) variable. The deceleration
continues until the motor reaches zero velocity.
The behavior of 0 and 4 axes is different. Once the KILL 1 is executed, the motion starts a
third-order deceleration process just as if a HALT command was executed. The 0 and 1
axes continue moving in the common motion. The vector deceleration of the motion is
DEC(0) and the vector jerk is JERK(0).
If command KILL (1,4) is executed, the KILL process applies to 1 and 4 axes motors. Each
motor decelerates independently from its instant velocity to zero using the constant
decelerations KDEC(1) and KDEC(4). At the same time the 0 axis motor decelerates using
the third-order profile and the DEC(0) deceleration value, just as if a HALT command was
executed.
If command KILL (0,1,4) is executed, each motor decelerates independently from its instant
velocity to zero using the constant decelerations KDEC(0), KDEC(1) and KDEC(4).
In all cases bits AST.#MOVE and MST.#MOVE of axes 0,1, and 4 remain 1 as long as any of the
motor continues decelerating. Once all motors reach zero velocity, bits AST(0).#MOVE, AST
(1).#MOVE and AST(4).#MOVE drop to zero. Bit MST(0).#MOVE drops to zero as soon as

91Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

position error PE(0) remains less than TARGRAD(0) for more than SETTLE(0) milliseconds. So
do bits MST(1).#MOVE and MST(4).#MOVE (for the 1 and 4 axes respectively).

> KILL command with non-default connection
If a motor is in non-default connection but depends only on the corresponding axis the
effect of the KILL command is similar to the case of default connection. For example, if the
connection was specified as

CONNECT RPOS(0) = 0.5*APOS(0)*APOS(0)
DEPENDS 0,0

(in this case the DEPENDS command is not necessary), the KILL 0 command starts the same
kill process on the 0 axis motor and the halt process on the motion that involves the 0 axis.
All above considerations about the idle motor, single-axis motion and multi-axis motion
remain the same.
The result is a little different if a motor depends on another axis or on several axes, for
example:

CONNECT RPOS(2) = APOS(0) + APOS(2) - APOS(4)
DEPENDS 2,(0,2,4)

(in this case the DEPENDS command is required). The difference is that the KILL 2 command
applies the halt operation to all executed motions involving any of the axes 0, 2, or 4.
Correspondingly, bits AST(2).#MOVE and MST(2).#MOVE remain 1 as long as any of these
motions continues its termination process.

A KILLALL command always terminates all executed motions and therefore makes no
difference between the default and non-default connection.

4.1.4 FCLEAR Command

The FCLEAR command clears the current faults and the result of the previous fault stored in the
MERR variable.

The command syntax is:

FCLEAR [axis_specification]

In simple cases AXIS_SPECIFICATION is single axis like 0 or 13, a string consisting of axis enclosed in
parentheses and separated by commas, for example: (0, 2, 13), or keyword ALL for all axes.

If AXIS_SPECIFICATION is omitted, the command clears the system faults. If AXIS_SPECIFICATION is
specified, the command clears the FAULT and MERR components for the specified axes.

However, if a reason for a fault is still active, the controller will set the fault again immediately after
the FCLEAR command.

If one of the cleared faults is an encoder error, the command also resets the feedback position to
zero.

4.1.5 SET Command

The SET command determines a current value of the feedback, reference or master position. The
command syntax is:

SET axis_VAR=expression

92Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Only the following variables can be specified in AXES_VAR:

FPOS Feedback Position

F2POS Secondary Feedback Position

RPOS Reference Position

APOS Axis Reference Position

Although the SET command resembles the ASSIGNMENT command, execution of the SET command
is different from ASSIGNMENT. The SET command induces a complex operation in the controller
instead of a simple assignment.

Regardless of the left-side variable, execution of the SET command starts with calculation of
EXPRESSION. The result of the calculation provides the right-side value. Then the execution
depends on the variable specified on the left side.

The following are examples of the use of SET.

> SET RPOS and SET FPOS

The SET command that contains RPOS or FPOS, shifts the origin of an axis. For example,
command

SET FPOS(0) = 0

places the origin of the 0 axis to the point where the motor is located this moment.

FPOS and RPOS provide a reference and a feedback value for a motor. If a control loop
works properly, FPOS follows RPOS with small or zero error.

If the error is zero, both SET FPOS and SET RPOS provide the same result: both FPOS and
RPOS become equal to the right-side value. This is not a simple assignment, and the
command adjusts the controller offsets so that the periodic calculation of FPOS and RPOS
will provide the required results.

If the error is non-zero, the result of SET FPOS and SET RPOS may differ slightly. Consider
the following example:

?RPOS(0), FPOS(0) Query RPOS and FPOS for the 0 axis
6000 The RPOS and FPOS differ by 2 counts due to, for

instance, the bias in the amplifier
6002
SET RPOS(0) = 0 Set RPOS to 0 for the 0 axis
?RPOS(0), FPOS(0) Query RPOS and FPOS for the 0 axis
0 RPOS is set to exact zero
2 FPOS is set to 2 in the current point in order to

retain the offset between RPOS and FPOS
SET FPOS(0) = 0 Set FPOS to 0 for the 0 axis
?FPOS(0), RPOS(0) Query RPOS and FPOS for the 0 axis
0 FPOS is set to zero in the current point

93Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

-2 RPOS is set to -2 in order to retain the offset
between RPOS and FPOS

In both SET commands no physical motion occurs. The 0 axis remains in the same position,
only the internal offsets in the controller are adjusted to shift the origin as required.

Even if a motor is idle, several identical SET FPOS commands may place the origin at slightly
different points due to the jitter in feedback.

If a motor is flagged by the Default Connection bit (MFLAGS.#DEFCON), the RPOS and APOS
variables are conjugate. Therefore, any command that changes RPOS, also changes the
corresponding APOS to the same value.

> SET F2POS

The command SET F2POS shifts the origin of the secondary axis feedback. For example,
command

SET F2POS(0) = 0

places the origin of the 0 axis secondary feedback to the point where the motor is
currently located.

As a result of the command execution, F2POS becomes equal to the right-side value. This is
not a simple assignment, as the command adjusts the controller offsets so that the
periodic calculation of F2POS will provide the required result (the specified value in the
current point).

Even if a motor is idle, several identical SET F2POS commands may place the origin in
slightly different points due to the jitter in feedback.

> SET APOS

If a motor is flagged by the Default Connection bit (MFLAGS.#DEFCON), variables RPOS and
APOS are conjugate, and always keep the same value. In this case, the SET APOS command
is identical to the SET RPOS command for the same axis.

For non-default connection a motor and the corresponding axis are separated. Variables
RPOS and APOS may have different values. In this case, command SET APOS shifts the
origin of the axis but has no effect on the origin of the motor. The controller adjusts
offsets so that the command causes no jerk in the motor.

In the case of non-default connection the controller adjusts offsets only for the motors
that depend on the specified axis. Therefore, the depends command is significant in a
connection specification. If dependence is specified incorrectly, one or more motors
can jump once SET APOS=… is executed.

4.1.6 GROUP, SPLIT & SPLITALL Commands

The GROUP, SPLIT and SPLITALL commands manage grouping the axes in coordinate systems for
multi-axis motion.

94Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

> The GROUP command creates a coordinate system for multi-axis motion.

For most applications there is no need for the GROUP commands in that the controller
automatically creates and splits groups. Mainly you would include the command in order to
keep a check that you have included all of the relevant axes in the subsequent motion
commands. If you include a motion command that does not relate to all of the axes in the
group (without a previous SPLIT command), the controller issues an error.

> The SPLIT command breaks down an axis group previously created with a GROUP
command.

> The SPLITALL command breaks down all axis groups previously created with a GROUP
command.

Syntax:

GROUP axes_specification

SPLIT axes_specification

SPLITALL

The format of the AXES_SPECIFICATION is a list of the axes separated by commas and enclosed in
parentheses, for example (0,1,2,4). After power-up, each controller axis is a single axis, no axis
group exists. One-axis motion does not require any axis group. One-axis motion can be activated
immediately after power-up, assuming that the motor is enabled. Several one-axis motions can be
activated in parallel, and do not require any axis group definition.

An axis can belong to only one group at a time. If the application requires restructuring the axes, it
must split the existing group and only then create the new one.

For example, the command:

GROUP (0,2,3)

creates an axis group that includes axes 0, 2 and 3.

The first axis in the AXES_SPECIFICATION (0 in the above command) is the leading axis. The motion
parameters of the leading axis become the default motion parameters for the group. For example,
for the above (0,2,3) group, the values of ACSPL+ variables VEL(0), ACC(0), DEC(0), JERK(0), KDEC(0)
become the default values of velocity, acceleration, deceleration, jerk and kill deceleration for all
motions executed in this group. If, for example, a group was defined as (3,2,0), the 3 axis is leading
and the values of 3 will be used as the default motion parameters for 0 and 2.

In all other aspects the leading axis has no preference, and the order of axis letters in group
definition is not important. The motion commands referencing a group are not required to specify
all axes of the group or in the same order. However, an axis can belong to only one group, so all
specified axes must belong to the same group. A motion command that references axes from
different groups will fail.

The SPLIT command must specify the same axes as the GROUP command that created the group.
After the SPLIT command the group no longer exists.

95Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

If the SPLIT command specifying an axis that is currently in motion is executed within
the buffer, the buffer execution is suspended until the motion is completed. However,
if the SPLIT command is sent from the host or as a Terminal command, it returns error
3087: "Command cannot be executed while the axis is in motion”.

The SPLITALL command breaks up all existing groups. An ACSPL+ program that starts in an
unknown environment (not just after power-up) can execute the SPLITALL command in order to
ensure that no axes are grouped.

4.1.7 GO Command

The GO command starts a motion that was created using the /W switch (see SLAVE Command). A
motion that has been created without this switch starts automatically after creation and does not
require the GO command.

Syntax:

GO axes_specification

In simple cases AXES_SPECIFICATION is a single axis like 0 or 13, or a string consisting of axis enclosed
in parentheses and separated by commas, for example: (0, 2, 13), or the keyword: ALL (specifying all
of the axes).

There following possibilities are available:

> Starting single-axis motion
A GO command specifies one axis that is not included in any group. The command starts
the last created motion for the same axis. If the motion was not created, or has been
started before, the command has no effect. For example:

PTP/w 0, 1000 Create the motion, but do not start it
GO 0 Start the motion

> Starting common motion
A GO command specifies a leading axis in a group. The command starts the last created
motion for the same axis group. If the motion was not created, or has been started before,
the command has no effect. For example:

PTP/w 0, 1000 Create the motion, but do not start it
TILL IN0.1 Wait until input 1 is activated
GO 0 Start the motion

> Synchronous start of several motions
A GO command can specify several axes. Each axis in the specification must be either a
single axis not included in any group or a leading axis in a group. The command
synchronously starts the last created motions for all specified axes and groups. If any of
referenced motions was not created, or has been started before, the command does not
affect this axis/group but does affect all other specified axes/groups. For example:

96Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

PTP/w (0,1), 1000,1000 Create the motion, but do not start it
PTP/w 2, 8000 Create the motion, but do not start it
GO (0,1) Start both motions synchronously

4.1.8 HALT Command

The HALT command terminates a motion using a deceleration profile. The deceleration value is
specified by the DEC variable (see SPiiPlus Command & Variable Reference Guide).

Syntax:

HALT axes_specification

In simple cases AXES_SPECIFICATION is a single axis like 0 or 13, or a string consisting of axis enclosed
in parentheses and separated by commas, for example: (0, 2, 13), or the keyword: ALL for all axes.

The following possibilities are supported:

> Terminating single-axis motion
A HALT command specifies one axis that is not included in any group. The command
terminates the currently executed motion for the same axis. If no motion is executed, the
command has no effect.

> Terminating common motion
A HALT command specifies a leading axis in a group. The command terminates the
currently executed motion in the same axis group. If no motion is executed, the command
has no effect.

> Terminating several motions
A HALT command specifies several axes. Each axis in the specification must be either a
single axis not included in any group or a leading axis in a group. The command terminates
currently executed motions in all specified axes and groups.
If any of referenced axes are idle, the command does not affect this axis/group but does
affect all other specified axes/groups.

4.1.9 BREAK Command

The BREAK command provides premature termination of a motion with smooth transition to the
next motion. The command executes differently in the following two cases:

1. The next motion already waits in the motion queue. The BREAK command terminates the
current motion and starts the next motion immediately. The controller provides smooth
velocity profile of transition from motion to motion.

2. There is no next motion in the motion queue. The BREAK command has no immediate
effect. The current motion continues until the next motion appears in the motion queue.
At that moment the controller breaks the current motion and starts the next as described
above. If the current motion finishes before the next motion comes to the queue, the
command has no effect.

Syntax:

BREAK axes_specification

97Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

In simple cases AXES_SPECIFICATION is a single axis like 0 or 13, a string consisting of axis enclosed in
parentheses and separated by commas, for example: (0, 2, 13), or the keyword: ALL (specifies all
available non-dummy axes).

The BREAK command is not supported in path or master-slave motion.

The following possibilities exist:

> Terminating single-axis motion
A BREAK command specifies one axis that is not included in any group. The command
terminates the currently executed motion for the same axis. If no motion is executed, the
command has no effect.

> Terminating multi-axis motion
A BREAK command specifies a leading axis in a group. The command terminates the
currently executed motion in the axis group. If no motion is executed, the command has
no effect.

In multi-axis motion, smooth vector velocity profiles do not always assure smooth
motion of the coordinates. The user application must provide nearly tangent motion
trajectories in the junction point to avoid jumps in coordinate velocity, which may cause
damage to equipment.

> Terminating several motions
A BREAK command specifies several axes. Each axis in the specification must be either a
single axis not included in any group or a leading axis in a group. The command terminates
currently executed motions in all specified axes and groups. If any of referenced axes are
idle, the command does not affect this axis/group but does affect all other specified
axes/groups.

4.1.10 IMM Command

The IMM command provides on-the-fly changes of the motion parameters: velocity, acceleration,
deceleration, jerk, and kill deceleration.

Syntax:

IMM motion_var=command

Only the following variables can be specified as MOTION_VAR:

VEL Velocity

ACC Acceleration

DEC Deceleration

JERK Jerk

98Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

KDEC Kill deceleration

Although the IMM command resembles the ASSIGNMENT command, execution of the IMM
command differs from normal assignment to the same variables.

As in conventional assignment, execution of the IMM command starts from calculation of the right-
side expression. The calculated right-side value is assigned to the left-side variable. Execution of
flat assignment finishes at this point.

The difference between the conventional ASSIGNMENT and the IMM commands becomes apparent
when the command executes while a motion is in progress. The ASSIGNMENT command does not
affect the motion in progress or any motion that was already created and is waiting in a motion
queue. Only the motions created after the ASSIGNMENT command is executed will use the motion
parameters changed by the command. The IMM command, on the other hand, not only changes
the specified variable, but also affects the motion in progress and all motions waiting in the
corresponding motion queue. To change a motion on-the-fly, the IMM command must change a
variable of the axis that is a single axis of the motion or a leading axis if the motion is in axis group.

4.2 Point-to-Point Motion

This section covers the commands and relevant ACSPL+ standard variables for Point-to-Point (PTP)
motion.

4.2.1 PTP Command

The PTP command provides for positioning to a specified target point.

Syntax:

PTP[/switch] axis_designation, target_point [,velocity]

Where SWITCH can be one or a combination of:

e Wait for motion termination before executing next command.

f Allow specification of non-zero final velocity.

m
Use the maximum motion profile values in the axis group as a whole rather than those
of the leading axis.

r Consider the target point value as relative to the start point.

v Use the specified velocity instead of the default velocity.

w Create the motion, but do not start until the GO command is issued.

In the simplest case the ptp command looks like this:

PTP 0, 1000

If the axis is moving when the command is issued, the controller creates the motion and inserts it
into the axis motion queue. The motion waits in the queue until all motions before it finish, and
only then starts.

99Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

This command creates a motion of the 0 axis to the absolute target point of 1000. If the axis is idle
when the command is issued, the motion starts immediately.

If the E switch is specified, the controller will wait until the motion terminates before executing the
next command. The E switch is a convenient substitute for following the PTP command with
another command that waits for motion termination, for example, the command:

PTP/e 2,1000

is equivalent to:

PTP 2,1000
TILL ^AST(1).#MOVE

Appending the W switch to the PTP command prevents the motion from starting immediately
even if the axis is idle. The command:

PTP/w 0, 1000

creates a motion to the absolute target point 1000, but the motion will not start until the GO 0
command is issued.

In the two examples above the value 1000 is an absolute target point. To specify a relative value
you use the R switch:

PTP/r 0, 1000

This command creates a motion to a relative target point, which will be defined exactly only when
the motion starts. When the motion starts, the target point is calculated as the instant axis position
plus the specified value. For example, the following two commands

PTP 0, 1000
PTP/r 0, 1000

are equivalent to

PTP 0, 1000
PTP 0, 2000

In the previous examples the motion executed using the default velocity VEL(0) for the specified
axis. To override the default velocity you use the V switch, as shown in the following example:

PTP/v 0, 1000, 15000

The motion created will ignore the default velocity VEL(0) and execute at a velocity of 15000. The
default value VEL(0) remains unchanged.

You can combine several switches in one command. For example, the command

100Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

PTP/rv 0, 1000, 15000

creates a motion to relative target point 1000 using velocity 15000.

The examples shown above specified a single-axis motion. However, the axis, as specified in the
PTP command, can be either a single axis or an axis group, which means that it can define a multi-
axis move. The command

PTP (0,2,4), 1000,2000,3000

creates a temporary axis group that includes axes 0, 2 and 4 and executes motion in one group.
Temporary axis groups are automatically created and split-up by the controller. A group is
automatically split-up if the following motion does not address all the axes in the group.

The controller normally takes the motion parameter values from the leading axis. However this can
be overridden by using the /M switch, which causes the controller to calculate the maximum
allowed common motion velocity, acceleration, deceleration and jerk, for example:

PTP/m (0,1), 1000, 2000

The calculation examines the VEL, ACC, DEC, JERK parameters of the axes involved and the
projections of the motion vector to the axes.

If the M switch is combined with the V switch, the M switch is ignored for the velocity
and the velocity specified in the command is used. However, common acceleration,
deceleration, and jerk are still calculated.

4.2.2 MPTP, POINT, MPOINT, and ENDS Commands

These commands are used for programming a sequence of multi-point motion.

Syntax:

MPTP [/switch] axis_designators [,dwell_time]

POINT axis_designators, coordinate [,coordinate] [,velocity]

MPOINT axis_designators, point_matrix, number_of_points

ENDS

Where SWITCH can be one or a combination of:

w Create the motion, but do not start until the GO command has been issued.

v Use the velocity specified in the command instead of the default velocity.

r Treat points as relative.

c
Use the point sequence as a cyclic array: after positioning to the last point do
positioning to the first point and continue.

101Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.2.2.1 MPTP Command

Use the MPTP command to specify axis and dwell time:

MPTP 0, 1000

This command creates a multi-point motion of the 0 axis and specifies a dwell time of 1000 msec at
each point. If dwell is not required, DWELL_TIME may be omitted. The MPTP command itself does
not specify any point, so the created motion starts only after the first point is specified. The points
of motion are specified by the POINT or MPOINT commands that follow the MPTP command.

Consider the following program fragment:

The MPTP command creates the multipoint motion. However, the motion does not start until a
point is defined. After the first POINT command the motion starts if all involved axes are idle (not
involved in some previous motion), or waits until a motion that is in progress ends, and then starts.
The four POINT commands specify the following sequence:

The controller performs sequential positioning to each point. The ENDS command informs the
controller that no more points will be specified for the current motion. The motion cannot finish
until the ENDS command executes. If the ENDS command is omitted, the motion will stop at the last
point of the sequence and wait for the next point. No transition to the next motion in the queue
will occur until the ENDS command executes.

Normally, multi-point motion starts with the first POINT command, and the next POINT command
executes while the motion is already in progress. However, sometimes you may need to delay
starting the motion until all points are defined. You use the W switch to prevent the motion from
starting until a GO command executes. The motion created by the command:

MPTP/w 0, 1000

will not start until a GO 0 command is issued.

102Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Adding the R switch to the MPTP command causes all points to be treated as relative. The first point
is relative to the position when the motion starts, the second point is relative to the first, and so on.
The previous example, using the MPTP/R command, will look like this:

PTP (0,1), 0, 100 Create PTP motion to the first point (this
serves as the reference point).

MPTP/r (0,1) Create multipoint motion in group (0,1)
with no dwell time.

POINT (0,1), 100, 100 Add point.
POINT (0,1), 100, -100 Add point.
POINT (0,1), -100, -100 Add point.
ENDS (0,1) End the point sequence.

The MPTP command uses the default velocity VEL for positioning to each point. The V switch allows
using a specific velocity for each positioning. The desired velocity must be specified in the POINT
command after the point coordinates. The previous example is modified for using different
velocities:

MPTP/v (0,1) Create multipoint motion in group (0,1)
with no dwell time.

POINT (0,1), 0, 100, 30000 Move to first point at velocity 30000.
POINT (0,1), 100, 200, 10000 Move to second point at velocity 10000.
POINT (0,1), 200, 100, 5000 Move to third point at velocity 5000.
POINT (0,1), 100, 0, 10000 Move to fourth point at velocity 10000.
ENDS (0,1) End the point sequence.

Several switches can be appended to one command. For example, the command:

MPTP/rv 0, 1000

creates a multi-point motion with dwell time of 1000msec. The points will be specified by relative
coordinates, and velocity will be specified for each point.

4.2.2.2 POINT Command

The POINT command adds a destination point to multi-point or arbitrary motion paths.

The POINT command does not require a specific value for all axes involved in a multi-point motion.
If an axis is not specified in a POINT command, the axis remains idle and retains the previous value.
Similarly, if a multi-point motion is created with the V switch, the velocity argument in a POINT
command can be omitted, and the velocity of the previous segment will be used. If velocity is
omitted for the first point, the default velocity VEL will be used.

Consider the following example:

MPTP/v (0,1) Create multipoint motion in group (0,1)
with no dwell time.

POINT (0,1), 100, 0, 30000 Move to first point at velocity 30000.
POINT 1, 100 Move to second point at velocity 30000.
POINT 0, 200 Move to third point at velocity 30000.

103Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

POINT 1, 0, 10000 Move to fourth point at velocity 10000.
ENDS (0,1) End the point sequence.

The four POINT commands specify the following sequence:

4.2.2.3 MPOINT Command

The MPOINT command adds an array of points to either multi-point or arbitrary path motion.

The arguments of the MPOINT command are:

> AXIS_DESIGNATORS – must specify the same axes in the same order as in the axes-
specification of the corresponding mptp or path command.

> POINT_MATRIX – name of declared two dimensional array.

> NUMBER_OF_POINTS – specifies how many points are added to the motion by the
command.

Before the MPOINT command can be executed, an array must be declared and filled with the point
coordinates. Each row of the array contains coordinates of one point.

POINT_MATRIX must be a two-dimensional array, each column of which containing the
specification of one point. The matrix must contain at least NUMBER_OF_POINTS
columns. If the matrix contains more columns, the extra columns are ignored.

If the corresponding motion command is MPOINT without the V switch or PATH without the T
switch (see PATH Command), a column of the matrix must contain the coordinates of the point.
Therefore, if the AXIS_DESIGNATORS includes M axes, the matrix must contain exactly M rows.

If the corresponding motion command is MPTP/V, the matrix must contain M+1 rows. An additional
value in each column specifies the desired velocity for transition from the previous to the current
point. The velocity is specified in position units per second.

If the corresponding motion command is PATH/T, the matrix must contain M+1 rows. An additional
value in each column specifies the time interval between the previous and the current point. The
time is specified in milliseconds.

104Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The following example illustrates how the MPOINT command can be used for adding points on-the-
fly. The example also shows a simple approach to synchronization between the host computer that
calculates the points and the controller that executes the motion.

The host computer calculates the desired points and transmits the coordinates via the Ethernet
link. The motion involves 6 axes. Therefore, each point specification contains 6 real numbers.

Because transmitting each point separately would be very ineffective in the Ethernet, the host
calculates the desired points in advance and transmits them in batches of 50 points. The controller
executes the motion. As soon as the controller is ready to accept the next batch of points and the
host is ready to send the batch, the next transmission occurs, and so on. The pace of the host and
the controller may be very different. However, the host is assumed fast enough to calculate the
next 50 points before the controller has moved through the previous 50 points.

The controller executes the following program:

real Points(50)(6) Declare an array of 50 points for
each of six axes. The host will
write the coordinates to the array.

int Sync Declare synchronization variable.
MPTP (0,1,2,4,5) Create multi-point motion for axes

0, 1, 2, 3, 4 and 5.
WHILE Sync >= 0 Continue until the host writes

negative number to Sync.
TILL Sync Wait until the points are received.

Once the host has filled the
Points array, it writes the Sync
variable with a number of points
written to the Points array.

IF Sync > 0 Sync < 0 indicates that the host
has finished the point generation.

MPOINT (0,1,2,4,5), Points, Sync Add points from the Points matrix.
Sync = 0 The controller informs the host

that the next batch is expected.
At this moment the motion through
the accepted points has not
finished, but the controller is
ready to receive more points.

END End if.
END End while.
ENDS (0,1,2,4,5) End mptp.
STOP End program.

The program running on the host in pseudo-code looks like this:

double HPoints(50)(6);
int N, HSync, NBuf;
HANDLE Com;
open communication, start program in buffer NBuf of the controller;
while (Continue)
calculate N (<= 50) points in array HPoints;

105Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

acsc_WriteReal(Com, NBuf, "Points", 0, N-1, 0, 6, HPoints, 1000) ;
acsc_WriteInteger(Com, NBuf, "Sync", -1, -1, -1, -1, &N, 0);
do
acsc_ReadInteger(Com, NBuf, "Sync", -1, -1, -1, -1, &HSync, 0);
while HSync;
reset Continue to zero if all points have been calculated;
end;
N = -1
acsc_WriteReal(Com, NBuf, "Points", 0, N-1, 0, 6, HPoints, 0) ;

Synchronization between the host and the controller is provided by the SYNC variable. When the
host has finished transmitting the next batch of points to the controller, it writes to SYNC the
number of points in the batch. The controller waits for non-zero SYNC and then adds the points to
the motion. When the controller has added the points, it writes zero to SYNC, which signals to the
host to transmit the next batch of points.

When the host comes to the end, it writes -1 to SYNC to indicate the end of the motion.

4.2.3 The GRTIMEVariable

The ACSPL+ GRTIME variable is an 8 element real, read-only array. GRTIME displays the time in
milliseconds remaining until the end of motion. The GRTIME value is valid in PTP and TRACK motion.
For other motion types, the GRTIME value is not valid. GRTIME behavior is as follows:

> Each element of GRTIME refers to one axis. In a multi-axis motion, only the GRTIME element
of the leading axis is updated; the elements of other involved axes are zero.

> If an axis is idle, its GRTIME element is zero.

> At the beginning of motion, GRTIME is not valid and is assigned a large value.

> In Firmware versions previous to Version 4.50, GRTIME was invalid during motion phases 1
and 2. In Firmware Version 4.50, the invalid period is shorter, but its exact duration is not
guaranteed. Normally, the period of invalid GRTIME is from one to five milliseconds. In the
worst case, the period may span phases 1 and 2.

This illustrates the GRTIME behavior in PTP or TRACK motion.

106Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Figure 4-1. GRTIME Behavior in PTP or TRACK Motion

4.2.4 Modulo Axis

Bit 29 (#MODULO) of the MFLAGS variable specifies modulo axis. If the bit is one, the axis feedback
changes between the specified minimal and maximal positions. The options are:

> The ACSPL+ SLPMIN variable specifies the lower limit of modulo axis.

> The ACSPL+ SLPMAX variable specifies the upper limit of modulo axis.

The reference position RPOS of the modulo axis changes in the range from SLPMIN to SLPMAX
inclusively.

Physically, the motion of the modulo axis is not limited, but each time when the RPOS comes out
from range SLPMIN..SLPMAX, the controller brings RPOS into the range by changing the internal
offset EOFFS. Note the following conditions:

> If the axis goes down and crosses the SLPMIN value, the controller adds value SLPMAX-
SLPMIN to EOFFS. Assume the axis comes down to value SLPMIN-D. Correcting EOFFS, the
controller brings RPOS to value SLPMAX-D.

> If the axis goes up and crosses SLPMAX value, the controller subtracts value SLPMAX-
SLPMIN from EOFFS. Assume the axis comes up to value SLPMAX+D. Correcting EOFFS, the
controller brings RPOS to value SLPMIN+D.

> Changing EOFFS immediately affects also feedback position FPOS. However, there is a
slight difference between FPOS and RPOS behavior. RPOS always remains within the
SLPMIN..SLPMAX interval. As FPOS differs from RPOS by position error, the corresponding
FPOS may occur beyond the interval.

In the case of a default connection, the modulo operation also affects the APOS value
(APOS=RPOS).

107Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

SLPMIN and SLPMAX variables can be changed only when the motor is disabled.

4.2.5 MotionBoost

Motion Boost motion type reduces settling time for short moves with high accelerations. The
motion profile has high level smoothness attributes even for Jerk values, with minimal energy
injection, optimized for the best settling time.

4.2.5.1 20 kHz Motion

During execution, a discrete representation of a motion path is generated. Before the introduction
of 20 kHz control, the controller would generate a new discrete point every controller cycle. Thus,
the resolution of the path was determined by the controller cycle time (CTIME).

The new 20 KHZ motion generation feature allows the user to specify that a specific motion should
be generated in a 20 KHz resolution, regardless of the actual controller cycle. The feature is an
extension of available motion types, and is currently only available for MotionBoost™ type motion.

108Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

When using MotionBoost™ on MC4U or SPiiPlusSA devices a custom DSP is required.

GMTYPE

A new GMTYPE is created for 20 KHz motions. GMTYPE for BPTP/2 is 43. 43 = 11 (BPTP) + 32.

GMTYPE over 32 will represent 20KHz motion.

Compatibility

The feature supports dynamic error compensation. The value used for compensation will be the
one calculated once per controller cycle.

The feature uses the Reverse data collection mechanism to communicate with the DSP, which
prevents it from working with other features that use the mechanism: SPINJECT, SPRT, Fast PEG
loading.

The new feature will not support the following commands: CONNECT, BREAK and HALT.

DSP interface

The feature is supported in the standard version of the DSP.

To determine if the desired DSP supports the feature, a new variable is queried in the DSP-
"desired_position_20i" of type int.

Status command

To start operating in the 20KHz mode, the FW will send to the DSP a signal by changing the
Controller-DSP status variable bit 29 that will represent the 20KHz motion status.

Data format

The data (reference positions) will be sent in the format of fixed point 32.32 (total 8 Byte)

The data written to the memory as two int variables.

The position data is sent to the DSP in the reverse data collection packet in the following position:

109Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

CTIME = 0.5 CTIME = 0.25 CTIME = 0.2

DSP First Axis 0 0 0

DSP Second Axis 80 40 32

Reverse Data Collection Packet Offset

Data collection

The following variables may be collected for this motion type:

GPATH, GVEL, GACC, GJERK, APOS, PPOS, PPOSCOMP.

PPOS, PPOSCOMP – two new variables, specifying the reference position generated in the current
cycle as opposed to the delay used to calculate FPOS).

The new values will be collected automatically, when a specified variable is collected in a frequency
that is higher than the controller’s.

Problem: this could cause undesirable behavior for a user that is unaware of the feature and would
like to collect DSP variables. See discussion below.

To resolve this issue, a new, “smart” data collection item is created.

The new item has two references, one to the standard variable (e.g. APOS[6]) and one to the
custom 20 KHz array (e.g. APOS_20KHZ[6]).

When a 20 KHz motion generation is active for the axis, the custom data is collected. When a
standard motion generator is active or there is no motion at all, the standard variable is collected
instead.

4.2.5.2 BPTP

Description

BPTP defines a motion profile using the MotionBoost Feature.

Syntax

BPTP[/suffixes] axis_list, destination_point, [value of Tf, value of Vf]

Suffixes

Arguments Comments

None
Travel time will be calculated by the MPU to achieve a the minimum possible
time

/t
Minimum travel time in seconds, The calculated travel time will be at least
the specified value. Incompatible with the /d suffix.

/d

Travel Time – specifies the exact travel time for the motion in seconds.

All other considerations are ignored, which could cause a safety fault during
motion execution.

Incompatible with the /t suffix.

110Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Arguments Comments

/f User will enter final, nonzero velocity

/e Wait for motion termination before executing next command.

/r Relative motion

/v Use velocity parameter instead of default velocity parameters.

/w Create the motion, but to not start until the GO command is issued.

/m
Use the motion profile values of the axis group as a whole, rather than those
of the leading axis, without exceeding any of the defined axes motion VEL,
ACC, DEC, JERK values.

/q
Use the motion profile values of the axis group as a whole, rather than those
of the leading axis, without exceeding any of the defined axes motion VEL,
ACC, DEC, JERK values. Not compatible with /2 suffix. Range is 0-25 ms.

/2 Use 20 kHz motion mode

Use of the /d suffix to specify minimum travel time overrides all other parameters
which might limit velocity and requires careful attention to safety considerations.

BPTP/2 is limited to at most 2 axes in a single function call.

The BPTP/2 command is limited to at most 2 axes per Servo Processor and at most 4
axes per system.

Arguments

axis_list

a Axis a will perform the motion

(axes)
Axes will perform a synchronized motion to the destination point along to a
straight line connecting the start to the destination point. Axes may be any set of
distinct numbers in the range 0 to 63.

destination-point

(af,bf,cf)
af is a destination point for axis a
bf is a destination point for axis b
cf is a destination point for axis c

111Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Value of Tf

Tf Desired travel time

Value of Vf

Vf Desired final velocity

GPHASE

Two options are available.

> • Four phases (For motion in positive direction; for motion in negative direction reverse the
inequality signs)

1. Acceleration buildup

> • RJERK>0, RACC>0

2. Acceleration finishing

> RJERK<0, RACC>0

3. Deceleration buildup

> RJERK<0, RACC<0

4. Deceleration finishing

> RJERK>0, RACC<0

Examples

BPTP 0, 100

A simple example that moves axis 0 to position 100.

If the axis is moving when the command is issued, the controller creates the motion and inserts it
into the axis motion queue. The motion waits in the queue until all motions before it finish, and

only then starts.

BPTP/ed (0,1), 100, 200, 0.4

Move axes 0,1 to position 100,200.

Do not execute the next command in the program until the motion is done.

Execute the motion in exactly 0.4 seconds.

// execute a BPTP motion with 20 KHz resolution
// move axes 0,1 to absolute coordinates 1,1

BPTP/2 (0,1),1,1

GMTYPE

The motion GMTYPE is 11, or 43 if using the /2 suffix for 20 kHz control.

112Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.2.5.3 BPTPCalc

Description

The BPTPCALC function calculates and allows the user to set the motion variables according to a
desired motion time. When the travel time and distance are known in advance, the BPTPCALC
should be used to generate new VEL, ACC and JERK values.

Syntax

BPTPCALC real Motion_duration, real Distance, int index

Arguments

Motion_
duration

The desired motion time in seconds. The time will be rounded up to a
whole number of controller cycles.

Distance The travel distance in user units

Index
1 - Velocity
2 - Acceleration
3 - Jerk

Example

! Calculate the motion parameter to execute a 10 unit BPTP motion in 3 ms
VEL(0) = bptpcalc(0.003, abs(10), 1)
ACC(0) = bptpcalc(0.003, abs(10), 2)
JERK(0) = bptpcalc(0.003, abs(10), 3)

enable(0)

BPTP/R(0), 10 ! Move axis 0, 10 units, in 3 ms

STOP

4.3 JOG Command

The JOG command defines Jog motion, which is a motion with constant velocity and no defined end
point. The motion continues until the next motion command stops it, or the motion fails because of
limit switch activation or other condition.

Syntax:

JOG [/switch] axis_designator [,direction] [,velocity]

Where SWITCH can be one or a combination of:

w Create the motion, but do not start until the GO command has been issued.

v Use the velocity specified in the command instead of the default velocity.

and DIRECTION is indicated by:

113Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

+ Motion is in the positive direction.

- Motion is in the negative direction.

The simplest JOG command is:

JOG 0

This command creates a jog motion of the 0 axis in positive direction using the default velocity VEL
(0).

Motion direction may be specified in the command:

JOG 0, -

This command creates a jog motion of the 0 axis in negative direction using the default velocity VEL
(0).

The command:

JOG 0, +

is the same as:

JOG 0

The V switch allows a specific velocity to be used instead of the default velocity VEL. The command:

JOG/V 0, 30000

ignores the default velocity and creates a jog motion with a velocity of 30000.

As with other types of motion, jog motion may be terminated by the HALT, KILL, or BREAK
commands. Unlike any other motion, jog motion also terminates when the next motion command
for the same axis executes. For example, the following program fragment:

JOG 0, +
WAIT 500
JOG 0, -

provides jogging in the positive direction for 500msec and then switches to the negative direction.
The controller automatically ensures a smooth transition from motion to motion.

Jogging can also occur in an axis group. For example, the following program fragment

JOG (0,1,4), -++

creates jogging in three axes: 0 in the negative direction, and 1 and 4 in the positive direction. The
motion uses the default velocity VEL(0) as a vector velocity for the three-axis motion.

114Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.4 TRACK Command

Track motion enhances throughput by generating a move automatically if the target position is
changed.

The TRACK command initiates a track motion. In a track motion, a new move is generated to a new
target position whenever the TPOS (target position) variable changes.

Syntax:

TRACK [/w] axis_designator

The W switch causes the command to create the motion, but wait to start until a GO command is
issued.

The following command creates tracking motion of the 0 axis:

TRACK 0 Create track motion of 0 axis

If the axis is idle, the track motion is activated immediately. If the axis is moving, the controller
creates the motion and inserts it into the axis motion queue. The motion waits in the queue until all
previous motions in the queue are executed, and then starts.

When the track motion starts, the controller copies the current value of the reference position
(RPOS) element to target position (TPOS) element. For example, when the command is executed,
RPOS(0) is copied to TPOS(0). No change of RPOS and no physical motion occur at this time.

Afterwards, the axis waits until the TPOS element is assigned a different new value. As soon as the
program executes:

TPOS(0) = NewTarget Assign a value to the TPOS element

the controller generates a PTP motion to the point designated by the value of the NEWTARGET
user variable. After the 0 axis reaches NEWTARGET, the axis waits for the next change of TPOS. The
next assignment to TPOS(0) automatically activates the next PTP motion and so on. Therefore, track
motion is executed as a sequence of PTP motions.

The motion state bits AST.#MOVE, AST.#ACC, MST.#MOVE, and MST.#ACC reflect the state of each
PTP motion in the track sequence exactly as they do for ptp motion. Between PTP motions, while
the axis waits for the next TPOS assignment, the motion bits are zero (with the exception of the
MST.#MOVE bit, which can be 1 if the position error exceeds the TARGRAD limit).

The following ACSPL+ program fragment defines sequential positioning to points 1000, 2000,
10000, 11000:

TRACK 2 Create track motion of axis 2
TPOS(2) = 1000 Move to point 1000
TILL ^AST(2).#MOVE Wait till the motion ends
TPOS2 = 2000 Move to point 2000
TILL ^AST(2).#MOVE Wait till the motion ends
TPOS2 = 10000 Move to point 10000
TILL ^AST(2).#MOVE Wait till the motion ends
TPOS2 = 11000 Move to point 11000

115Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

TILL ^AST(2).#MOVE Wait till the motion ends
HALT 2 Terminate track motion

The result is similar to the following fragment:

PTP 2,1000 Move to point 1000
PTP 2,2000 Move to point 2000
PTP 2,10000 Move to point 10000
PTP 2,11000 Move to point 11000

While the code with the PTP commands looks shorter and simpler, there are applications where
track motion is preferable to point-to-point motion.

Track motion is not terminated automatically. If TPOS is not changed, the axis track motion remains
at the last target point until TPOS is assigned a new value, and then motion continues.

TRACK terminates due to:

> Any subsequent motion command (except TRACK) for the motion axis involved in a track
motion, except the case when the next motion is a group motion.

> Any fault activation that disables the drive or kills the motion.

> User termination by HALT, KILL, or DISABLE command.

The motion profile while in Track mode, like in a standard PTP motion, is defined by the ACSPL+
variables VEL, ACC, DEC and JERK. The track command accepts the values of these variables at the
beginning of each component PTP motion within the track motion. Therefore, if an application
assigns a new value to VEL, ACC, DEC or JERK, while track mode is in effect, then the new value will
be used the next time that the application initiates a motion (by assigning a new value to TPOS).

The following ACSPL+ program fragment sets a specific velocity for each PTP motion:

TRACK 1 Create track motion of axis 1
VEL(1) = 20000 Set motion velocity 20000 units/sec
TPOS(1) = 1000 Move to point 1000
TILL ^AST(1).#MOVE Wait till the motion ends
VEL1 = 5000 Set motion velocity 5000 units/sec
TPOS1 = 2000 Move to point 2000
TILL ^AST(1).#MOVE Wait till the motion ends
VEL1 = 10000 Set motion velocity 10000 units/sec
TPOS1 = 110000 Move to point 11000
TILL ^AST(1).#MOVE Wait till the motion ends
HALT 1 Terminate tracking motion

In the example above the application updates TPOS only after the previous PTP motion ends.

In the following example the application updates TPOS while the motion is still in progress:

TRACK 0 Create tracking motion of X axis
TPOS(0) = 2000 Move to point 2000
TILL GPHASE(0) >= 6 Wait till the motion comes to phase 6

(deceleration to final point)

116Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

TPOS(0) = 2500 Correct the final point
TILL ^AST(0).#MOVE Wait till the motion ends
HALT 0 Terminate tracking motion

In this case, the controller does not execute two separate motions. As soon as TPOS is changed to
2500 (before the controller reaches 2000), the controller changes the move on-the-fly to the new
target position of 2500. The on-the-fly change is done smoothly, similar to end-point correction on-
the-fly.

The same result is provided by the following fragment:

PTP 0, 2000 Move to point 2000
TILL GPHASE(0) >= 6 Wait till the motion comes to phase 6 (deceleration
to final point)
BREAK 0 Terminate the current motion and provide smooth

transition to the next motion
PTP 0,2500 Move to point 2500

The TRACK command may also be used for programming multi-axes motion, for example, the
command

TRACK 0; TRACK 2; TRACK 3

creates track motion of 0, 2 and 3 axes. The multi-axis track motion is executed as a sequence of
PTP motions. A new PTP motion starts each time when one or more elements of TPOS that
correspond to the involved axes are changed. Consider the following example:

TRACK 0;TRACK 2;TRACK 3 Create track motion of the 0, 2 and 3 axes
TPOS(0)=0; TPOS(2)=0; TPOS(3)=0 Move to point 0=0, 2=0, 3=0
TILL ^AST(0).#MOVE Wait till the motion ends
TPOS(2)=1000 Move to point 0=0, 2=1000, 3=0
TILL ^AST(0).#MOVE Wait until the 0 motion ends
TPOS(0)=100;TPOS(3)=200 Move to point 0=100, 2=1000, 3=200
HALT (0,2,3) Terminate track motion

In the following example TPOS is updated while the previous motion is still in progress:

TRACK 0; TRACK 3 Create track motion of the 0 and 3 axes
TPOS(0)=2000; TPOS(2)=1000 Move to point 0=2000, 2=1000
TILL GPHASE(0) = 4 Wait until the motion reaches constant velocity (phase 4)
TPOS(3)=0 Set a new final point 0=2000, 3=0
TILL ^AST(0).#MOVE Wait until the motion ends
HALT 0 Terminate tracking motion

In the above case, the controller does not execute two separate motions. As soon as TPOS is
updated, the controller changes on-the-fly from PTP motion towards 0=2000, 3=1000 to PTP
motion towards 0=2000, 3=1000. The transition from the first motion to the second is done
smoothly. While each PTP motion follows a straight trajectory, the transition between the motion is
not straight, as shown in the following diagram:

117Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.5 Segmented Motion

Segmented Motion moves axes along a continuous path. The path is defined as a sequence of
linear and arc segments on the plane. Although segmented motion follows a flat path, it may
involve any number of axes because the motion plane can be connected to the axes at any
projection transformation.

4.5.1 Understanding Slaved Segmented Motion

Motion generation for segmented motion may be considered as a two-stage process. In the first
stage the controller generates a smooth motion diagram as a function of time:

S = F(T)

where S is a distance along the segmented path, T stands for time, and F is a function independent
of the specified segments.

In the second stage the controller separates the S path into the involved axes:

0 = F(S)

1 = FY(S)

The second stage supplies the current values of the involved axes. The functions FX, FY depend
only on the specified segments. Only the second stage builds the shape of the path in the XY plane.
The first stage provides the motion progress along the path. If the function F of the first stage is
modified, this affects the motion velocity and time, but does not alter the final shape of the path.

The including the S or P switch with the MSEG command affects the first stage of the motion
generation process by causing the distance S to follow the value MPOS (Axis Master) of the leading
axis in the group. For position lock (P switch), following is strict:

S = MPOS

For velocity lock (S switch), following allows a constant offset:

S = MPOS + C

118Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

In both cases the second stage of the motion generation remains unchanged and depends only on
the specified segment sequence.

Segment commands specify a path on the plane, and the MPOS value of the leading axis defines
motion progress along the path.

Formulas that calculate the MPOS value must be defined before using the master command.

4.5.2 MSEG, LINE, ARC1, ARC2, STOPPER Commands

These commands are employed to define segment motion.

Syntax:

MSEG [/switch] axis_group, initial_start_point [,initial_start_point, initial_start_point][,projection
matrix_designator]

LINE [/switch] axis_group, final_point [,final_point, final_point]

ARC1 [/switch] axis_group, center_point, final_point, rotation_direction [,velocity]

ARC2 [/switch] axis_group, center_point, rotation_angle, rotation_direction [,velocity]

STOPPER axis_group

ENDS axis_group

Where switch can be one or a combination of:

w Create the motion, but do not start until the GO command

v Use the velocity specified for each segment instead of the default velocity

c
Use the segment sequence as a cyclic array: after the last segment return to the first
segment and so on.

s
Slaved motion - the motion advances in accordance to the master value of the leading
axis (velocity lock).

p Position lock - slaved motion, strictly conforming to the master value.

e
Extrapolated - if a master value travels beyond the specified path, the last or the first
segment is extrapolated.

t
Stalled - if a master value travels beyond the specified path, the motion stalls at the last
or first point.

The E and T switches are relevant only for slaved motion and must be used with S or P switch. For
discussion of slaved motion see SLAVE Command.

Segmented motion can be executed in an axis group with any number of controller axes.

The MSEG command specifies axis group and the initial starting point:

MSEG (0,1), 1000, 1000

119Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

This command creates a segmented motion of the X axis group and specifies the coordinates of
initial point on the plane. The MSEG command itself does not specify any segment, so the created
motion does not start immediately. A LINE or ARC command must follow the MSEG command to
specify the segment sequence.

Consider the following program fragment:

MSEG (0,1),1000,1000 Create segmented motion in group
(0,1), coordinates of the initial
point are (1000,1000).

ARC1 (0,1), 1000,0,1000,-1000,- Add arc segment with center
(1000,0), final point (1000,-1000),
clockwise rotation.

LINE (0,1),-1000,-1000 Add line segment with final point
(-1000,-1000).

ARC2 (0,1),-1000,0,-3.141529 Add arc segment with center
(-1000,0) and rotation angle

-π radians.
LINE (0,1),1000,1000,50000 Add line segment with final point

(1000,1000).
ENDS (0,1) End the segment sequence

The MSEG command creates the segmented motion. The motion does not start, because no
segment is defined yet. After the first ARC1 command the motion starts if the axis group is idle (not
involved in some previous motion). If the group is not idle, motion will start when the previous
motion stops. The four segment commands specify the following path (where X is the direction of
the 0 axis and Y is the direction of the 1 axis):

 Y

X

Start

(1000,1000)

(1000, -1000)

(-1000,1000)

(-1000,1000)

ARC1 and ARC2 differ only by the required arguments. ARC1 requires the coordinates of the center
point, final point, and the direction of rotation. ARC2 requires the coordinates of the center point
and the rotation angle (in radians). Each command produces the same result, so selection of either
ARC1 or ARC2 depends on the available data. If you know the coordinates of the center point,
coordinates of the final point and the direction of rotation, ARC1 is preferable. If you know the
coordinates of the center point and rotation angle, ARC2 is preferable.

The ROTATION_DIRECTION argument can be:

> + (plus) – for counter clockwise

> - (minus) – for clockwise rotation

120Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The entire sequence of segmented motion must be terminated with an ENDS command. The ENDS
command informs the controller that no more segments will be specified for the specified motion.
The motion cannot finish until the ENDS command executes. If the ENDS command is omitted, the
motion will stop in the last point of the sequence and wait for the next point. No transition to the
next motion in the queue will occur until the ENDS command is executed.

Segmented motion usually starts with the first segment command (LINE, ARC1, or ARC2). The next
segment command therefore executes while the motion is already in progress. This is generally
not a problem, because the program execution rate is higher than typical motions time. However,
sometimes you may need to delay starting the motion until all points are defined. In this case you
append the W switch to the command to prevent the motion from starting until the GO command
is issued. The motion, created by the command:

MSEG/w (0,1),1000,1000

will not start until the GO (0,1) command is issued.

The R switch is not allowed with segmented motion. All coordinates in the line, ARC1 and ARC2
commands are absolute in the plane. However, the whole path is relative to the point where the
axes are located when the segmented motion starts. In other words, all coordinates are absolute in
the plane, but the plane is relative to the starting point. The initial point, specified in the MSEG
command, is also absolute in the plane. Therefore, the initial point does not cause any motion to
that point, but only supplies starting coordinates for the first segment. The motion program should
provide a motion to the desired initial point before executing the MSEG command. The following
fragment illustrates a typical activation of the segmented motion:

PTP (0,1), 0, 100

This command causes a physical motion to the point (0,100) that will be an absolute starting point
for the following segmented motion.

MSEG (0,1), 100, 100

Defines the starting coordinates for the first segment, which are absolute in the plane. The whole
plane is located in such a way that the starting point in the plane (100,100) coincide with the present
position of the motors (0,100).

The MSEG command uses the default velocity VEL for each segment. The V switch overrides the
default velocity and allows you to define a specific velocity for each segment. The desired velocity
must be specified in the LINE, ARC1 and ARC2 segment commands after all other arguments. If the
velocity argument is omitted in a segment command, the velocity from the previous segment is
used. If the velocity argument is omitted in the first segment, the default VEL is used. The previous
example is modified for using individual velocities:

MSEG/v (0,1),1000,1000 Create segmented motion in group
(0,1), coordinates of the initial
point are (1000,1000).

ARC1 (0,1), 1000,0,1000,-1000,-,30000 Add arc segment with center
(1000,0), final point (1000,-1000),
clockwise rotation, vector velocity 30000.

LINE (0,1),-1000,-1000 Add line segment with final point
(-1000,-1000). Vector velocity is not
specified, previous value 30000 will be used.

ARC2 (0,1),-1000,0,-3.141529,10000 Add arc segment with center

121Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

(-1000,0), rotation angle of -π,
vector velocity 10000.

LINE (0,1),1000,1000,5000 Add line segment with final point
(1000,1000), vector velocity 50000.

ENDS (0,1) End the segment sequence

Several switches can be attached to one command. For example, the command

MSEG/vw (0,1), 1000, 1000

creates a segmented motion with individual velocity for each segment. The motion does not start
until the GO (0,1) command is issued.

4.5.3 PROJECTION Command

The PROJECTION command is an expansion to the MSEG …ENDS set of commands that allows the
controller to perform a three dimensional segmented motion such as creating arcs and lines on a
user-defined plane. The method for this 3D segmented motion is to set a transformation matrix
that defines a new plane for the segmented motion.

Syntax:

PROJECTION axes, matrix_table

Arguments

axes List of axes.

matrix_table Coordinates defining the new plane.

As mentioned above, all coordinates, specified in the segment commands, are absolute in the
working plane. Projection is a matrix that connects the plane coordinates and the axis values as
specified in the mseg command. If the axis group contains two axes, and no PROJECTION command
is specified, the controller provides a default projection that corresponds to a 2x2 matrix:

1 0

0 1

The matrix directly connects the first coordinate of the working plane to the first axis of the axis
group and the second coordinate to the second axis.

The matrix can also define rotation and scaling. The full transform also includes an implicit offset.
The controller calculates the offset automatically in such a way that the initial coordinates specified
in the mseg command match the desired axis values at the moment when the motion starts. The
offset provides the full path to be relative to the starting point.

If an axis group contains N axes, the controller extends the default matrix to N lines. The additional
lines are filled by zeros:

1 0

0 1

122Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

0 0

… …

0 0

The matrix connects only the first two axes to the plane coordinates. Therefore the segmented
motion will involve only the first two axes in the group.

If N = 1, the MSEG command applies to a single axis, and the matrix contains the first line only:

1 0

In this case the axis will follow the first coordinate of the working plane.

You can replace the default matrix with the PROJECTION command.

Example:

real M(3)(2) !Define Matrix
M(0)(0)=1;M(0)(1)=0
M(1)(0)=0;M(1)(1)=1
M(2)(0)=0;M(2)(1)=2.74 !Set the transformation

!matrix values.
VEL(0)=1000;ACC(0)=10000;DEC(0)=10000 !Axis motion parameters
ENABLE (0,4,5) !Required command.
GROUP (0,4,5) !Required command.
SET FPOS(0)=0;SET FPOS(4)=0;SET FPOS(5)=0 !Set axes’ FPOS=0
MSEG (0,4),0,0 !Define original plane.
PROJECTION (0,4,5),M !PROJECTION of the 0, 4 and 5

!axes by matrix M
ARC2 (0,4),750,0,6,24 !ARC2 performed on new plane.
ENDS (0,4) !Concludes MSEG.
STOP !End Program

If the group contains N axis, the matrix in the projection command must be of size Nx2.

4.5.4 Arguments as Expression

Any argument in the LINE, ARC1, ARC2 commands can be specified by expression.

Using an expression instead of axis specification allows the involved axes to be calculated in the
execution time as opposed to the programming time (axis-independent programming). The
calculation must result in an integer between 0 and 7, corresponding to the eight axes.

Expression in place of coordinate allows calculating the segments on the fly. Consider the following
program fragment:

real P, K, S Declare the real variables P, K and S.
P = 3.14159; K = 100 / P; S = P / 1000 Calculate P K and S.
PTP (0,1), -100, 0 Perform a point-to-point motion in

the XY plane (X being the direction
of the 0 axis and Y being the direction
of the 2 axis) to the point: (-100,0).

123Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

MSEG (0,1), -100, 0 Create a segmented motion.
LOOP 2000 Perform the loop 2000 times.
P = P + S
LINE (0,1), P*K*cos(P), P*K*sin(P) Execute a linear segment based on a

calculation.
END End loop.
ENDS (0,1) End segment motion.

The program executes the line command 2000 times. The line segments build up a curve close to
the Archimedean spiral:

Y

X

4.5.5 STOPPER Command

The controller builds the motion so that the vector velocity follows a smooth velocity diagram. If all
segments are connected smoothly, axis velocity is also smooth. However, if you have defined a
path with an inflection point, axis velocity jumps at this point. The jump might cause a motion
failure due to the acceleration limit. Even if a failure does not occur, the abrupt change in velocity
impairs accuracy and may be harmful to the machine.

The STOPPER command is used to avoid velocity jump in the inflection points. If a STOPPER
command is specified between two segments, the controller provides smooth deceleration to zero
before the stopper and smooth acceleration to specified velocity after the stopper. Consider the
following program fragment:

PTP (0,1), 1000, 1000 Go to initial point.
MSEG (0,1), 1000, 1000 Create a segmented motion.
LINE (0,1), 1000, -1000 Execute linear segment.
STOPPER (0,1) Slow down to zero.
LINE (0,1), -1000, -1000 Execute linear segment.
STOPPER (0,1) Slow down to zero.
LINE (0,1), -1000, 1000 Execute linear segment.
STOPPER (0,1) Slow down to zero.
LINE (0,1), 1000, 1000 Execute linear segment.
ENDS (0,1) End the segment sequence.

The program provides a rectangular path without velocity jumps:

124Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.5.6 Cyclic Motion

The C switch provides cyclic execution of segmented motion. The MSEG/C command creates a
motion that after executing the last segment, the motion begins again continues with the same
sequence. The final point of the last segment is therefore the starting point of the first segment.

Cyclic segmented motion does not automatically finish. You must use one of the
commands HALT, KILL, or BREAK to stop cyclic motion

The following is an example of the coding for cyclic motion:

ENABLE (0,1)
MSEG/c (0,1),1000,1000 !Create segmented motion in group X, coordinates of

!the initial point are (1000,1000)ARC1
(0,1), 1000,0,1000,–1000,– !Add arc segment with center (1000,0), and

!final point (1000,-1000), clockwise rotation
LINE (0,1),–1000,–1000 !Add line segment with final point (-1000,- 1000)

ARC2 (0,1),–1000,0,–3.141529 !Add arc segment with center (-1000,0) and
!a rotation angle of -π

LINE (0,1),1000,1000 !Add line segment with final point (1000,1000)
ENDS (0,1) !End the segment sequence

4.5.7 Slaved Motion at Extreme Points

Additional switches define behavior of slaved motion at extreme points, when the motion
approaches the final point of the last segment or the starting point of the first segment. This
occurs, when the MPOS master value falls out of the interval (0, L), where L is the overall length of
the path. There are four possibilities, depending on the switch employed in the command:

> c – Cyclic motion
The path is closed. The motion passes from the last segment to the first or from the first to
the last as if they were adjacent.

> e – Extrapolated motion
If the distance S is slaved to the MPOS master value becomes greater than the overall

125Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

length of the path, the motion continues along the extrapolated last segment. If the
distance S slaved to the MPOS master value becomes less than zero, the motion continues
along the extrapolated first segment. If the extrapolated segment is a circular arc, the
motion will follow along the extrapolated circle.

> t – Stalled motion
When the motion approaches the extreme point, the slave comes out from synchronism
and stalls in the point until the MPOS master value allows to regain synchronism. For
velocity lock synchronism is achieved when the MPOS changes its direction; after regaining
the offset C may have a different value than before approaching the extreme point. For
position lock synchronism regains when the MPOS falls into the interval (0, L) again. The
controller ensures smooth approaching the extreme points and smooth return to
synchronism.

> No switch – Bounded motion
The motion finishes when the slave approaches any extreme point. The controller
activates the next motion in the queue (if any). If the MPOS master value changes only in
positive direction, the behavior is very close to non-slaved motion. The difference is that
non-slaved motion is based upon the time value and slaved motion is based upon the
MPOS master value.

4.6 Extended Segmented Motion (XSEG)

XSEG provides several enhancements to MSEG for processing complex trajectory with higher
throughput and accuracy. The following main capabilities are implemented in XSEG:

> Corner detection

> Detection of segments, where required velocity violates axis velocity/acceleration and jerk
limits

> Velocity limitation at corners and segments where required velocity violates axis velocity,
acceleration and jerk limits

> Building up velocity profiles using the multi-segment look-ahead algorithm

> Corner rounding using different criteria

> Support of up to 6 axes

4.6.1 Corner Processing

Corner processing includes automatic detection of the corner and calculating the velocity for
passing the corner without exceeding acceleration and jerk limits.

4.6.1.1 Corner Detection

For each pair of adjacent segments, the controller calculates the tangent vector for each segment
at the junction point. If both vectors are equal, the segments are tangent, and no special
processing is required. Otherwise, both segments form a corner. In a corner, controller behavior
follows the corner processing option selected by the customer for this XSEG motion.

4.6.1.2 Supported Options

> Exact path: no deviation from the specified path is permitted. The user specifies two
additional parameters: threshold angle and corner velocity. The controller compares the

126Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

corner angle and the threshold angle. If the corner angle is smaller, the controller ignores
the corner and tries to move as if the junction is smooth (the threshold angle cannot be
large, otherwise passing the junction at working velocity can produce mechanical jerk). If
the corner angle is greater, the controller executes deceleration to achieve the junction
point with the specified corner velocity.

The following picture illustrates the option:

Figure 4-2. Corner Processing - Exact Path Option

> Corner rounding according to permitted deviation: the user specifies the motion trajectory
maximum permitted deviation from the corner point. The controller inserts an additional
segment in the corner so that the resulting path is smooth and complies with the
maximum deviation.

> Corner rounding according to permitted radius: the user specifies the additional segment
maximum permitted rounding radius. The controller inserts an additional segment in the
corner so that the resulting path is smooth and complies with the maximum permitted
radius.

> Automatic corner rounding: the user specifies the maximum segment length for
automatic corner rounding. The controller applies automatic corner rounding if the length
of both segments in the pair is less than the maximum segment length.

The following picture illustrates the option:

Figure 4-3. Corner Processing - Permitted Deviation, Permitted Radius and Corner Rounding
Options

127Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.6.2 Automatic Corner Processing

If the XSEG command doesn’t specify switchJ, A or D the controller provides an automatic
calculation of the corner parameters.

If switch y is specified, the controller provides automatic processing of corners and curvature
discontinuity points as described in Enhanced automatic corner and curvature discontinuity points
processing (switch/y).

If neither threshold angle or corner velocity are specified, the controller provides automatic
calculation of the corner parameters.

The controller algorithm of automatic corner processing works as follows:

1. The controller detects a corner on the path.

2. The controller calculates the equivalent acceleration for all involved axes.

3. If for any involved axis, the absolute value of equivalent acceleration is less than allowed
acceleration ACC for the axis, the controller ignores the angle and passes the angle
without deceleration.

4. Otherwise, the controller calculates the vector velocity that for any involved axis provides
the equivalent acceleration equal to or less than the allowed acceleration ACC. The
controller provides deceleration to the calculated velocity before the corner using the
look-ahead algorithm.

During movement on an arc segment, a coordinate acceleration (RACC) may exceed
the acceleration limit (ACC) by factor of up to 1.41.

The allowed acceleration deceleration is defined by ACC only. The DEC parameter is not used by the
algorithm.

Changing of the controller cycle time parameter (CTIME) may affect the automatic
corner processing calculations. The user needs to check the system performance after
the CTIME change.

4.6.3 Enhanced automatic corner and curvature discontinuity points processing
(switch/y)

If switchY is specified, the controller provides automatic processing of corners and curvature
discontinuity points.

In this mode the controller limits velocity not only according to axis acceleration (ACC), but also
according to axis jerk (JERK). The automatic velocity limitation is applied not only to corners, but
also to curvature discontinuity points.

Unlike corner, smooth junction (linear-to-arc or arc-to-arc) shows no discontinuity in the velocity
profile. However, in most smooth junctions curvature discontinuity occurs that causes discontinuity
in axis acceleration. The controller detects and processes curvature discontinuity points only if
switchD is specified.

128Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The controller algorithm of Enhanced automatic corner processing processes curvature
discontinuities as follows:

1. Controller detects a curvature discontinuity on the path.

2. Controller calculates equivalent jerk for all involved axes.

3. If the absolute value of equivalent jerk, of any involved axis, is less than allowed JERK
value for the axis, the controller passes the point without deceleration.

4. Otherwise, the controller calculates vector velocity for any involved axis that provides the
equivalent jerk equal or less than the allowed JERK value. The controller provides
deceleration to the calculated velocity at the point using look-ahead algorithm.

During accelerating/decelerating phases on an arc segment, a coordinate jerk (RJERK)
may exceed the jerk limit (JERK) by factor of up to 1.5.

Changing of the controller cycle time parameter (CTIME) may affect the automatic
corner processing calculations. The user needs to check the system performance after
the CTIME change.

4.6.4 Velocity Control and Look-ahead Algorithm

The required velocity for extended segment motion is either specified in the XSEG...ENDS block or
is taken from the VEL value of the leading axis. In a simple case, a third-order vector velocity profile
looks as:

Figure 4-4. Third-Order Velocity Profile

The motion starts from zero velocity, accelerates to the required velocity, goes through the
specified segments at the required velocity, and then decelerates approaching the final point of
the last segment with zero velocity and acceleration. The diagram also explains that the required
velocity actually defines maximal velocity through the path; on specific intervals the velocity is
lower than required.

A number of factors can affect the velocity diagram. The following conditions apply additional
restrictions to velocity in specific points or on intervals:

129Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

> The user specifies a new required velocity in a segment definition. The new velocity
remains active for the specified segment and for all subsequent segments.

> The user specifies lower (or zero) velocity in the segment final point. The specification
defines velocity in one point, but doesn’t change required velocity for subsequent
segments.

> The user specifies required velocity greater than axis velocity (VEL value) of one or more
involved axes. On some segments the required vector velocity can be achieved, on others
the axis velocity would be surpassed. The controller reveals such segments, and limits the
vector velocity accordingly.

> The controller detects a corner. Depending on the specified options, the controller either
uses specified corner velocity or calculates reduced velocity in the corner point to comply
with acceleration/jerk limitations (ACC and JERK) for all axes.

> The controller reveals an arc segment that requires either centripetal acceleration or jerk
greater than axis acceleration (ACC parameter) or axis jerk (JERK) of one or more involved
axes. The controller reduces velocity on this segment to comply with acceleration/jerk
limitations (ACC and JERK) for all axes.

> The controller detects a curvature discontinuity point (linear-to-arc or arc-to-arc junction).
Depending on the specified options, the controller either uses specified curvature
discontinuity velocity or calculates reduced velocity in the point to comply with jerk
limitations (JERK) for all axes.

After all velocity restrictions are exposed, the controller builds a third-order velocity profile that
never exceeds the required velocity.

Frequently, acceleration/deceleration intervals appear longer than the related
segment. When a CAD system calculates the motion segments, the resulting motion
often contains numerous small segments. In this case, the acceleration/deceleration
interval may span a number of segments. To calculate proper velocity profile, the
controller needs to analyze segments well ahead of the current segment, reveal
changes in required velocity in advance, and then trace the segments back to find
starting points of deceleration in velocity profile.

4.6.5 Corners and Curvature Discontinuity Points

A corner is a non-smooth connection of two adjacent segments. In a corner, velocity vector
changes its direction. If the velocity vector is non-zero, all related coordinates show discontinuity in
the corner coordinate velocity.

130Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

A curvature discontinuity point is a smooth connection of two adjacent segments, if the two
segments have different or differently-directed curvatures. Most smooth connections are actually
discontinuity points. In a discontinuity point, all related coordinates show discontinuity in
acceleration.

4.6.6 Dynamic Velocity Profile Generation

If all motion segments were specified before the motion start, the whole path is already known,
and the whole velocity profile can be calculated from the beginning.

However, in a typical case, the controller starts executing XSEG motion while the program or host
continues adding segments. A newly added segment can change the velocity profile of the
previous segments. For example, a new segment specifies lower required velocity. The lower
velocity is efficient from the first point of the segment; therefore the controller provides
deceleration profile on the previous one or more segments.

131Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The controller provides dynamic calculation and, if necessary, recalculation of the motion profile
each time once a new segment is added.

To make look-ahead calculation possible, the program or host has to add segments in advance,
before they are actually reached in the motion. This is not a problem, if segments are added from
ACSPL+ program. However, if segments arrive from the host through a communication channel,
the host may fail to supply a segment in time; a condition referred to as “segment starvation”. If
segment starvation occurs, the controller raises the AST.#STARV flag and executes a special
algorithm that prevents motion discontinuity. The algorithm avoids mechanical jerks, but moves at
a slower rate as long as starvation continues; once the host begins supplying segments at sufficient
rate, the controller returns to normal execution.

4.6.7 Controller Usage Considerations

As described in Dynamic Velocity Profile Generation, the XSEG command implements an “on-the-
fly” approach for velocity profile calculation. The calculations require significant processing time
that might cause a controller overusage fault in cases such as:

> Adding extremely short segments, when total execution time of the segment where the
specified velocity is less than 5 milliseconds

> Segment starvation conditions

> “On-the-fly” change of velocity by executing the IMM command (see The IMM Command),
where the specified velocity is lower than the previously defined velocity

In such cases, ACS Motion Control recommends using controllers with powerful processors such as:

> SPiiPlusSC

> SPiiPlusEC

> SPiiPlusNTM- XX-H

Otherwise, you can use the XSEG command with the following controllers:

> SPiiPlusNTM-08-S

> SPiiPlusNT-LT-x-8, SPiiPlusNT-HP-x-8, SPiiPlusNT-LD-x-8

> SPiiPlusCMnt-1-08, SPiiPlusCMnt-2-08, SPiiPlusCMnt-3-08

When using one of the above products, configure the controller time (CTIME) to 1
millisecond and ensure that a maximum of one XSEG motion is executed
simultaneously.

4.6.8 Approaches for Adding Segments

4.6.8.1 Adding Segments In Advance

If the application calculates the whole (or part of) trajectory path in advance, the segments can be
added once they are calculated.

The controller answers the needs of this approach my providing AST.#NEWSEGM flag, which is
raised when the controller requires new segment to be added. In this case the application can wait
till the flag is raised and then add the segment.

132Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

From within the ACSPL+ buffers the segments are added using the corresponding segment
commands (LINE, ARC1, ARC2). The ACSPL+ program need not take care of whether there is free
space in the internal segments buffer or not.

If the buffer has free space, the segment is accepted and immediately inserted into the buffer; if
the buffer is full, the ACSPL+ program waits on the corresponding line until a segment buffer has
free space.

If segments are added from the host program, the host program should first query GSFREE in order
to know how many cells are free in the segment buffer. The segments are added using the
corresponding SPiiPlus Library functions.

This approach is simpler in implementation and ensures more optimal trajectory passing time, as
starvation is avoided. However, the trajectory cannot be quickly changed on the fly as all already
added segments should be executed first.

4.6.8.2 Adding Segments Only When Requested

The other approach to add segments when the application is not able to calculate the segments in
advanced or the trajectory path can be changed only at the last moment is to add segments only
when requested.

The controller answers the needs of this approach by providing the AST.#NEWSEGM flag, which is
raised when the controller requires a new segment to be added. In this case the application can
wait until the flag is raised and then add the segment.

From within ACSPL+ program the waiting for the flag is implemented using the TILL

TILL AST(axis).#NEWSEGM

If the segments are added from the host application, the application polls the bit and when it is
raised, the segment is added.

In order to avoid the starvation, the user application is able to configure when the #NEWSEGM flag
is raised by including the starvation_margin optional argument in the XSEG command.

4.6.9 Secondary Axes

To handle multi-axial CNC and laser cutting applications, a six-axial extension enables you, in XSEG
motion, to add up to four secondary axes to the primary axes described above.

Primary axes support full look-ahead functionality, while secondary axes provide limited
functionality, as described in this section.

4.6.9.1 Secondary Axes Functionality

Secondary axes provide the following functionality:

> All secondary axes move concurrently and synchronously with primary axes.

> Automatic corner processing takes care of secondary axes limits as well as of primary axes.
As a result, vector velocity of primary axes may be reduced due to secondary axes limits.

The following primary axes functionality is NOT available for secondary axes:

> Arc segments specification. Secondary axes implement linear interpolation .

> Corner rounding.

> Vector velocity and vector path calculation.

133Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.6.9.2 Using Secondary Axes in XSEG

Between two and six axes can be specified in the XSEG axis list as follows:

> the first two axes are considered as primary axes

> any additional axes (up to four) added to the axes list are considered as secondary axes

In the XSEG command, you specify initial coordinates for each axis specified in the XSEG axis list (see
XSEG...ENDS).

4.6.9.3 Secondary Axes in ARC1, ARC2, LINE

Between two and six axes can be specified in the ARC1, ARC2 and LINE axis lists as follows:

> the first two axes are considered as primary axes

> any additional axes (up to four) added to the axes list are considered as secondary axes

The ARC1, ARC2 and LINE axis lists should be identical to the XSEG axis list.

For each axis, ARC1 and LINE specify the primary axes destination coordinate. ARC2 specifies the
secondary axes destination coordinates (destination coordinates of the primary axes are calculated
from the arc parameters). For details, see ARC1, ARC2, LINE.

4.6.10 Supported MotionParameters

The existing GSEG parameter indicates the currently executed actual segment, after trajectory
processing. The trajectory processing may change segments numbering either by adding
additional segments (in case of rounding) or by removing segments (in case of zero length
segments). So, GSEG numbering may not corresponds to the numbering of originally defined by the
user segments.

The newly introduced GSEGU parameter indicates the currently executed original user segment.
Any added or removed segment does not effect the GSEGU numbering of originally defined by the
user segments.

XSEG updates the following motion-related parameters:

> Motion and Axis Statuses: AST, MST

> Vector velocity, acceleration and jerk: GVEL, GACC, GJERK

> Axis velocity: GVEC

> Motion queue status and motion type: GMQU, GMTYPE

> Trajectory vector distance from the beginning of the first segment: GPATH

> Elapsed motion time: GETIME

> Currently executed segment: GSEG

> Currently executed “original user” segment: GSEGU

> Segments buffer status: GSFREE

> Currently executed segment final point coordinates: TPOS

134Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

XSEG builds the algorithm upon the following axis motion parameters as axis constraints: VEL, ACC,
JERK

The deceleration (DEC) parameter is not used by the XSEG command.

4.6.11 NonSupported MotionParameters

The following parameters are not updated by xseg:

> Remaining motion time: GRTIME

> Motion phase: GPHASE

4.6.12 XSEG...ENDS

Segmented Motion. XSEG...ENDS enables the user to incorporate the following into the motion
application:

> Corner detection

> Detection of segments, where required velocity violates axis velocity/acceleration limits

> Velocity limitation at corners and problematic segments

> Building a velocity profile using multi-segment look-ahead algorithm

The following commands are used within the block to define the segmented motion:

> ARC1 - adds an arc segment to a segmented motion and specifies the coordinates of
center point, coordinates of the final point, and the direction of rotation

> ARC2 - Adds an arc segment to a segmented motion and specifies the coordinates of
center point, rotation angle and direction.

> LINE - Adds a linear segment to a segmented motion.

> ENDS- terminates the motion sequence

Syntax

XSEG
[/switches] (axis_list), initial_position_axis1,initial_position_axis2[,initial_position_axis3…,initial_
position_axis6], [,velocity][,end_velocity][,junction_velocity][,angle][,curvature_velocity][,deviation]
[,radius][,maximal_length] [,starvation_margin [,segments_buffer]]

Segment commands (ARC1, ARC2, LINE)

ENDS

Arguments

Argument Description

axis_list
Axes involved in XSEG motion, specified as axes numbers separated by
comma or as axes names separated by comma.

135Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Argument Description

initial_
position_
axis1

Initial position of the first axis.

initial_
position_
axis2

Initial position of the second axis.

initial_
position_
axis3

…

initial_
position_
axis6

Mandatory only if AXIS_LIST contains more than 2 axes. Number of initial
positions must correspond to the number of axes in AXIS_LIST.

velocity
[Mandatory with /V switch] .

Defines required velocity instead of default velocity (VEL).

end_
velocity

[Mandatory with /F switch].

Defines required velocity at the end of each segment.

junction_
velocity

[Mandatory with /J switch].

Defines required velocity at the junction. See switch explanation below for
details.

angle

[Mandatory with /A switch].

The junction will be treated as a corner if actual junction angle is more than
defined.

curvature_
velocity

[Mandatory with /D switch].

Defines required velocity at curvature discontinuity points. See suffix
explanation below for details.

deviation

[Mandatory with /G switch].

Defines maximal allowed trajectory deviation from the corner point.. See
switch explanation below for details.

radius

[Mandatory with /U switch].

Defines maximal allowed rounding radius of the additional segment. See
switch explanation below for details.

136Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Argument Description

maximal_
length

[Mandatory with /H switch].

Defines the maximum length of the segment for processing automatic corner
rounding. If the length of a segment that formed a corner exceeds the
specified maximum length, the corner will not be rounded.

starvation_
margin

[Optional] Starvation margin in milliseconds. The controller sets the
AST.#NEWSEGM bit starvation_margin millisecond before the starvation
condition occurs.

By default, if the argument is not specified, the starvation margin is 500
milliseconds.

segments_
buffer

[Optional] One-dimensional user defined real array.

The controller uses this array to store adding segments. By default, if the
argument is not specified, the controller allocates internal buffer for storing
50 segments only. The argument allows the user application to reallocate the
buffer for storing larger number of segments. The larger number of
segments may be required if the application needs to add many very small
segments in advanced.

The buffer is for the controller internal use only and shouldn't be used by the
user application.

The buffer size calculation rule: each segment requires about 750 bytes, so to
allocate the buffer for 200 segments, it should be at least 750 * 200 = 150,000
bytes.

The following declaration defines a 150,000 bytes buffer:

real buf(18750)

For details on how to declare a buffer with more than 100,000 elements, refer
to XARRSIZE in the SPiiPlus ACSPL+ Command and Variable Reference Guide.

Switches

There are three types of optional switches:

> General

> Velocity look-ahead

> Corner rounding

The controller processes the specified switches in the following order:

1. The controller checks and applies corner rounding options.

2. The controller checks and applies velocity look-ahead options.

Switches from different groups can be applied together. For example, it's possible to specify a
velocity at curvature discontinuity points (switch /d) together with permitted deviation (switch /g).

137Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

In this case, the controller first applies corner rounding for the trajectory and then
calculatesvelocity profile for already processed trajectory.

Optional /switches are for use only with the XSEG command:

General

/w

Do not start until the GO command.

If the switch is not specified, the motion starts immediately after the first motion
segment is defined.

/v

Specify required velocity.

The switch requires additional parameter that specifies required velocity.

If the switch is not specified, the required velocity is derived from the leading axis
parameters.

/m

Use maximum velocity under axis limits.

Legacy mode. It’s recommended to use l suffix mode instead.

With this switch, no required velocity should be specified.

The required velocity is calculated for each segment individually on the base of
segment geometry and axis velocities (VEL values) of the involved axes.

If velocity for the individual segment (suffix v) is specified, the new velocity is applied
for the specified segment only. The specified velocity can be higher than velocity
calculated according with the suffix m.

The suffix cannot be specified together with suffix l.

/l

Velocity limitation under axis limits.

As opposed to the suffix m, with this suffix the required velocity can be specified
either for all motion (suffix v for xseg command) or as segment velocity (suffix v for
line, arc1, arc2 commands). In both cases, the controller tries to achieve the required
velocity by taking into account also velocity limits of all involved axes. If the required
velocity cannot be achieved within the axis velocity limits, the maximal velocity within
the axis velocity limits is used.

The suffix cannot be specified together with suffix m.

Velocity look-ahead

138Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

/f

Decelerate to the end of each segment.

The switch requires an additional parameter that specifies end velocity. The
controller decelerates to the specified velocity in the end of each segment. The
specified value should be less than the required velocity; otherwise the parameter is
ignored.

If the switch is not specified, deceleration in each segment is not required. However,
in specific segments deceleration might occur due to corner processing or other
velocity control conditions.

/j

Decelerate to corner.

The switch requires an additional parameter that specifies corner velocity. The
controller detects corner on the path and decelerates to the specified velocity before
the corner. The specified value should be less than the required velocity; otherwise
the parameter is ignored.

If switch J is not specified while switch A is specified, zero value of corner velocity is
assumed.

If switches J and A are not specified, the controller provides automatic calculation of
the corner processing.

/a

Do not treat junction as a corner, if junction angle is less than or equal to the specified
value in radians.

The switch requires an additional parameter that specifies negligible angle in radians.

If switch A is not specified while switch J is specified, the controller accepts default
value of 0.01 radians that is about 0.57 degrees.

If switches J,A,D, and Yare not specified, the controller provides automatic calculation
of the corner processing.

/d

Decelerate to curvature discontinuity point.

The switch requires an additional parameter that specifies velocity at curvature
discontinuity points. Curvature discontinuity occurs in linear-to-arc or arc-to-arc
smooth junctions.

If the switch is not specified, the controller does not decelerate to smooth junction
disregarding curvature discontinuity in the junction.

If the switch is specified, the controller detects curvature discontinuity points on the
path and provides deceleration to the specified velocity. The specified value should
be less than the required velocity; otherwise the parameter is ignored.

The switch can be specified together with switch j and/or a.

If switch j, a and d are not specified, the controller provides automatic calculation of
the corner processing.

/y
If the switch is specified the controller provides automatic calculations as described in
Enhanced automatic corner and curvature discontinuity points processing (switch /y).

139Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Corner rounding

/g

Use a corner rounding option with the specified permitted deviation. The switch
requires additional parameter that specifies maximal allowed deviation of motion
trajectory fromthe corner point. The switch cannot be specifiedtogether with
switches u and h

/u
Use a corner rounding option with the specified permitted curvature. The switch
requires additional parameter that specifies maximal allowed rounding radius of the
addtional segment. The switch cannot be specified together with switches g and h

/h

Use automatic corner rounding option. The switch requires additional parameter that
specifies the maximum length of the segment for automatic corner rounding. If a
length of one of the segments that built a corner exceeds the specified maximal
length, the corner will not be rounded. The automatic corner rounding is only applied
to pair of linear segments. If one of the segments in a pair is an arc, the rounding is
not applied for this corner. The switch cannot be specified together with switches g
and u.

XSEG without switches does not require any additional parameters except the initial
point coordinates, for example, XSEG (0,1),0,0 creates segmented motion for axes 0
and 1 with initial point (0,0) with required velocity derived from the axis 0.

Related ACSPL+ Commands

GO – Starts the physical motion if XSEG/W is specified.

HALT – Stops the motion prematurely, even if not all segments have finished.

IMM – Changes the motion velocity, acceleration, or jerk. The new value takes effect immediately

Comments

XSEG without switches does not require any additional parameter, except initial point coordinates.
For example, the command: XSEG (0,1),0,0 creates Extended Segmented Motion for axes 0 and 1
with initial point (0,0) and required velocity derived from the axis 0.

Some switches, however, require an additional parameter to be specified. If more than one
parameter is required, the parameters should be separated by comma, and the order of
parameters is fixed in the following order:

1. Required velocity (used with /v)

2. Final velocity (used with /f)

3. Corner velocity (used with /j)

4. Angle (used with /a)

5. Curvature velocity (used with /d)

6. Deviation (used with /g)

7. Radius (used with /u)

140Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

8. Maximal segment length (used with /h)

Examples are:

XSEG (1,0),0,0

Segmented motion for axes 1 and 0. Required velocity is derived from the
axis 1, i.e., the VEL(1) value. No deviation from the path is permitted. If the
path contains a corner, and the junction angle is more than default value
0.01 radians, the velocity decelerates to zero in the corner point.

XSEG/vf
(0,1),0,0,100,50

Segmented motion for axes 0 and 1 with initial point (0,0) with required
velocity 100 units/sec; at the end of each segment, the motion should
decelerate to 50 units/sec.

XSEG/vja
(1,2),1000,1000,
100,20,0.05

Segmented motion for axes 1 and 2 with initial point (1000,1000) and
required velocity is 100 units/sec. If the path contains a junction, and the
junction angle is more than 0.05 radians, the velocity decelerates to 20
unit/sec in the junction point.

4.6.13 ARC1

Description

Use ARC1 to specify the center point and final point coordinates of an arc and the direction of
rotation. Direction is designated by a plus sign (+) or (–) for clockwise or counterclockwise rotation
depending on the encoders’ connections. When ARC1 is used for Extended Motion, it must be
initialized with XSEG...ENDS.

Syntax

ARC1 [/switches] (axis_list), center_point_axis1, center_point_axis2, destination_point_axis1,
destination_point_axis2, [destination_point_axis3, … destination_point_axis6,] direction, [,velocity]
[,end_velocity][,time][,values, variables[,index [,masks]]]

Arguments

Argument Description

axis_list
Defines one or two axes, specified as axes numbers separated by commas
or as axes names separated by commas. The axes should only be those axes
specified in the corresponding XSEG command.

center_
point_axis1

Center point position for the first axis

center_
point_axis2

Center point position for the second axis

destination_
point_axis1

Destination position of the first axis

destination_
point_axis2

Destination position of the second axis

141Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Argument Description

destination_
point_axis3

…

destination_
point_axis6

Mandatory only if AXIS_LIST contains more than 2 axes.

Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in the AXIS_LIST.

direction

Direction is specified as + or -. It defines clockwise or counterclockwise
rotation depending on the encoder connection: “+” for motion in the
direction of increasing encoder counts, or “-” for motion in the direction
decreasing encoder counts.

velocity

[Mandatory with /V switch].

Defines required velocity for the current and for all subsequent segments.
See Using ARC1, ARC2 and LINE Switches.

end_
velocity

[Mandatory with /F switch].

Defines required velocity at the end of the current segment. See Using ARC1,
ARC2 and LINE Switches.

time
[Mandatory with /T switch].

Defines segment processing time. See Using ARC1, ARC2 and LINE Switches.

values

[Mandatory with /O switch].

Defines the values to be written to variables array at the beginning of the
current segment execution. values is a one-dimensional user defined array
of integer or real type with maximum size of 10 elements .

variables

[Mandatory with /O switch].

Defines the user-defined array, which will be written with values data at the
beginning of the current segment execution. variables is a one-dimensional
user defined array of the same type and size as the values array.

index

[Optional, only used with /O switch]

Defines the first element (starting from zero) of the variables array, to which
values data will be written. If argument is omitted, values data is written to
the variables array starting from the first element (index 0).

masks

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are written
to variables array at the beginning of the current segment execution. masks
is a one-dimensional user-defined array of integer type and the same size as
the values array. The masks are only applied for integer values:

142Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Argument Description

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask(n))

If argument is omitted, all values bits are written to variables.

If values is a real array, the masks argument should be omitted.

For information on optional switches for this command, see Using ARC1, ARC2 and LINE
Switches.

4.6.14 ARC2

Description

Use ARC2 to specify the center point and rotation angle in radians of an arc segment. Designate
direction by positive or negative rotation angle, depending on the encoders’ connections. When
ARC2 is used for Extended Motion, it must be initialized with XSEG...ENDS.

Syntax

ARC2 [/switches] (axis_list), center_point_axis1, center_point_axis2, rotation_angle [,destination_
point_axis3, … destination_point_axis6][,velocity][,end_velocity][,time][,values, variables[,index
[,masks]]]

Arguments

Argument Description

axis_list
Defines one or two axes, specified as axes numbers separated by comma or
as axes names separated by comma. The axes should only be those axes
specified in the corresponding XSEG command.

center_
point_axis1

Center point position for the first axis

center_
point_axis2

Center point position for the second axis

rotation_
angle

Defines central angle of the arc, signed according to rotation direction: plus
for a counter-clock-wise arc, minus for a clock-wise arc.

destination_
point_axis3

…

destination_
point_axis6

Mandatory only if AXIS_LIST contains more than 2 axes.

Destination position of the rest of axes. Number of destination positions must
correspond to the number of axes in the AXIS_LIST.

velocity [Mandatory with /V switch].

143Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Argument Description

Defines required velocity for the current and for all subsequent segments.
See Using ARC1, ARC2 and LINE Switches

end_velocity

[Mandatory with /F switch].

Defines required velocity at the end of the current segment. See Using ARC1,
ARC2 and LINE Switches.

time
[Mandatory with /T switch].

Defines segment processing time. See Using ARC1, ARC2 and LINE Switches.

values

[Mandatory with /O switch].

Defines the values to be written to variables array at the beginning of the
current segment execution. values is a one-dimensional user defined array of
integer or real type with maximum size of 10 elements .

variables

[Mandatory with /O switch].

Defines the user-defined array, which will be written with values data at the
beginning of the current segment execution. variables is a one-dimensional
user defined array of the same type and size as the values array.

index

[Optional, only used with /O switch]

Defines the first element (starting from zero) of the variables array, to which values
data will be written. If argument is omitted, values data is written to the variables
array starting from the first element (index 0).

masks

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are written to
variables array at the beginning of the current segment execution. masks is a one-
dimensional user-defined array of integer type and the same size as the values
array. The masks are only applied for integer values:

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask(n))

If argument is omitted, all values bits are written to variables.

If values is a real array, the masks argument should be omitted.

144Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

For information on optional switches for this command, see Using ARC1, ARC2 and LINE
Switches.

4.6.15 LINE

Description

Use LINE to add a linear segment that starts at the current point and ends in the destination point
to the motion. When LINE is used for Extended Motion, it must be initialized with XSEG...ENDS.

Syntax

LINE [/switches] (axis_list), destination_point_axis1,destination_point_axis2
[,destination_point_axis3 … ,destination_point_axis6][,velocity][,end_velocity][,time]
[,values,variables[,index[,masks]]]

Arguments

Argument Description

axis_list
Defines one or two axes, specified as axes numbers separated by comma or
as axes names separated by comma. The axes should only be those axes
specified in the corresponding XSEG command.

destination_
point_axis1

Destination position of the first axis

destination_
point_axis2

Destination position of the second axis

destination_
point_axis3

…

destination_
point_axis6

Mandatory if AXIS_LIST contains more than 2 axes.
Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in AXIS_LIST.

velocity

[Mandatory with /V switch].

Defines required velocity for the current and for all subsequent segments.
See Using ARC1, ARC2 and LINE Switches.

end_
velocity

[Mandatory with /F switch].

Defines required velocity at the end of the current segment. See Using ARC1,
ARC2 and LINE Switches.

time
[Mandatory with /T switch].

Defines segment processing time. See Using ARC1, ARC2 and LINE Switches.

values [Mandatory with /O switch].

145Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Argument Description

Defines the values to be written to variables array at the beginning of the
current segment execution. values is a one-dimensional user defined array
of integer or real type with maximum size of 10 elements .

variables

[Mandatory with /O switch].

Defines the user-defined array, which will be written with values data at the
beginning of the current segment execution. variables is a one-dimensional
user defined array of the same type and size as the values array.

index

[Optional, only used with /O switch].

Defines the first element (starting from zero) of the variables array, to which
values data will be written. If argument is omitted, values data is written to
the variables array starting from the first element (index 0).

masks

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are written
to variables array at the beginning of the current segment execution. masks
is a one-dimensional user-defined array of integer type and the same size as
the values array. The masks are only applied for integer values:

variables(n) = variables(n) AND NOT (mask(n)) OR (values(n) AND mask(n))

If argument is omitted, all values bits are written to variables.

If values is a real array, the masks argument should be omitted.

For information on optional switches for this command, seeUsing ARC1, ARC2 and LINE
Switches

4.6.16 Using ARC1, ARC2 and LINE Switches

The following optional switches may be used singularly or in combination with ARC1, ARC2 and LINE:

/f

Decelerate to the end of segment.

The switch requires an additional parameter that specifies the end velocity. The
controller decelerates to the specified velocity at the end of segment. The specified
value should be less than the required velocity; otherwise the parameter is ignored.
The switch affects only one segment.

The switch also disables corner detection and processing at the end of segment.

If the switch is not specified, deceleration is not required. However, in special cases the
deceleration might occur due to corner processing or other velocity control conditions.

146Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

/v

Specify required velocity.

The switch requires an additional parameter that specifies the required velocity. The
switch changes the required velocity for the current segment and for all subsequent
segments.

If the switch is not specified, the required velocity does not change.

/o
Synchronize user variables with segment execution. The switch requires additional
two or three parameters that specify values, user variable and mask.

/t

Specify segment processing time The switch requires an additional parameter that
specifies the segment processing time in milliseconds. Unlike the required velocity
specification, the segment processing time defines velocity at the current segment
only, and has no effect on the subsequent segments. The switch cannot be specified
together with /V.

For ARC1, ARC2, and LINE some switches require an additional parameter to be specified. If more
than one parameter is required, the parameters should be separated by a comma, and the order of
parameters is fixed in the following order:

1. Required velocity (used with /V)

2. Final velocity (used with /F)

3. Segment processing time (used with /T)

4. /O switch parameters

Examples:

LINE/v (1,0), 1000, -
1000, 500

Add line segment with end point (1000, -1000) and segment velocity
500.

arc1/vf (0,1), 0, 0,
100, 100, +, 500,
100

Add arc segment with center (0,0), end point (100,100), clockwise
direction, segment velocity 500 and end velocity 100

int Value(1)

int Mask(1)

Value(0) = 1; Mask
(0) = 5

ARC2/o (0,1), 0, 0,
3.141529, Value,
OUT, 2, Mask

Add arc segment with center (0,0) and 180 degree (π) angle. At the
beginning of the segment execution, sets bit 0 and reset bit 2 of
digital outputs OUT(2).

4.6.17 Examples

4.6.17.1 Simple Two Axes Example

The following is a simple program example employing Extended Segmented Motion:

147Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

XSEG (0,1),1000,1000 Create segment motion in axes XY
(0,1) with initial point (1000,1000)

ARC1 (0,1),1000,0,1000,–1000,– Add arc segment with center
(1000,0), final point (1000, 1000),
clockwise rotation

LINE (0,1),–1000,-1000 Add line segment with final point
(1000, 1000)

ARC2 (0,1),–1000,0,–3.141529 Add arc segment with center

(1000,0) and rotation angle of -π
LINE (0,1),1000,0 Add line segment with final point

(1000,1000)
ENDS (0,1) End the segment sequence

The XSEG command creates the segment motion. The motion does not start at this moment. Actual
motion starts once the previous motion ends and one or more segments are added. The four
segment commands specify the following path:

The LINE command may specify one axis that actually moves in this segment. Other
axes specified in XSEG hold their positions while the linear segment is in progress.

The ARC1 and ARC2 commands always specify two axes.

The ARC1 and ARC2 commands differ by the required arguments. The ARC1 command specifies the
coordinates of the center point, coordinates of the final point and the direction of rotation (+ for
counter-clockwise, – for clockwise rotation). The ARC2 command specifies the coordinates of the
center point and rotation angle (positive for counter clockwise, negative for clockwise rotation).
The ARC1 and ARC2 commands may produce the same result, so the user may select the one that
suits the available data. If the user knows the coordinates of the center point, coordinates of the
final point and the direction of rotation, ARC1 is preferable. If the user knows the coordinates of the
center point and rotation angle, ARC2 is preferable.

The ENDS command informs the controller that no more segments will be specified for the motion.

148Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.6.17.2 Simple Four Axes Example

XSEG (0,1,2,3),1000,1000,500,500 Create segment motion with primary
axes 0,1 and secondary axes 2,3.
Initial point for primary axes is
(1000,1000), initial point for
secondary axes is (500,500).

ARC1 (0,1,2,3),1000,0,1000,-1000,500,-500 Add arc segment for primary axes with
center (1000,0), final point
(1000, 1000), clockwise rotation (”-“)
and line segment with final point
(500,-500) for secondary axes.

LINE (0,1,2,3),-1000,-1000,-500,-500 Add line segment with final point
(1000, 1000) for primary axes and
(-500,-500) for secondary axes.

ARC2 (0,1,2,3),-1000,0,-3.141529,-500,500 Add arc segment for primary axes with
center (1000,0) and rotation angle
-π and line segment with final point
(-500,500) for secondary axes

LINE (0,1,2,3),1000,1000,500,500 Add line segment with final point
(1000,1000) for primary axes and
(500,500) for secondary axes

ENDS (0,1,2,3) End the segment sequence

XSEG creates the segment motion for four axes: primary axes (0,1) and secondary axes (2,3). Actual
motion starts once the previous motion ends and one or more segments are added. The four
segment commands specify the following path:

Figure 4-5. Primary Axes Motion

149Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Figure 4-6. Secondary Axes Motion

In comparison with 2-axes example, xseg, line, arc1 and arc2 commands specify four axes, first two
of them are treated as primary axes.

> XSEG specifies the initial point coordinates for all four axes in the order the
axes appear in the axis list.

> ARC1 specifies the arc segment with a center, final point and rotation for
primary axes, and a linear segment with the final point for secondary axes.

> LINE specifies the final points of the linear segment for primary and secondary
axes.

> ARC2 specifies the arc segment with a center and angle for the primary
segment, and a linear segment with the final point for secondary axes.

> ENDS informs the controller that no more segment for this motion will be
added.

4.6.18 New AST Bits

Two new bit statuses have been added to the AST (Axis State) variable to support the XSEG motion
command:

Bit Name No. Description

#NEWSEGM 16

The controller sets the bit to inform that a new segment
is required to be provided by the application. The bit is set
starvation_margin ms before the starvation condition
occurs. The starvation condition is indicated by #STARV
bit.

150Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Bit Name No. Description

#STARV 17

The controller sets the bit to indicate starvation condition.
The starvation condition means that there are not
enough further segments to continue the motion with
required velocity. In this case, the controller starts
decelerating the motion with ½ jerk in order to prevent
motion discontinuity and avoid mechanical jerks. Once the
application begins supplying segments at a sufficient
rate, the controller returns the motion back to normal
condition.

Often the starvation condition causes inefficient velocity
generation and increases the time required for
completing the required motion path.

4.6.19 The IMM Command

The IMM command specifies new values of velocity, acceleration, deceleration, and jerk. In typical
case, the command is issued while a motion is in progress, and specifies new desired velocity. The
new velocity is expected to take effect immediately, not waiting for the current motion
termination.

The following considerations must be taken into account when issuing the IMM command in
conjunction with XSEG.

If the IMM command occurs either before the start XSEG, or after XSEG termination, its
action follows standard rules of IMM action in idle mode (or other motion whichever is
executed in the moment of IMM command).

If the IMM command is issued, and XSEG motion is at a specific point of execution, all XSEG
segments can be subdivided as follows:

> Segments before the current segment; these segments has been passed and are of no
interest.

> Current segment the current point belongs to.

> Segments after the current segments already included in segment queue and processed
by look-ahead algorithm.

> Future segments not included yet in segment queue.

If the IMM command specifies a new velocity, the velocity is expected to affect all XSEG segments
after the current point, including the section of current segment after the current point. However,
there are some limitations:

> Individual velocity can be specified for any segment. Individual velocity should not be
exceeded; actual velocity is required to be equal or (in some cases) less than the specified
one.

151Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

> The look-ahead algorithm may apply additional limitations to velocity on a segment or in a
junction point. The limitations are not eliminated by imm command.

Taking the above considerations into account, the velocity specified by the IMM command is not a
strict velocity setting from this point on; rather it operates as additional limitation that affects actual
velocity along with other limitations.

If the IMM command specifies a new velocity while XSEG motion is in progress, the controller
response includes the following actions:

> The specified velocity replaces the required velocity for the rest of the XSEG motion.
Therefore, the new value will act as the required velocity for a segment, if no individual
velocity is specified.

> The specified velocity defines velocity restriction for the rest of the XSEG motion. The
velocity restriction will take part in any velocity calculation; so that actual velocity can
appear equal or lower, but not higher than the specified velocity.

> The velocity profile for the queued segments, including the section of the current
segment after the current point, is recalculated taking into account the new required
velocity and velocity restriction. This way, operation of imm command is identical for
queued and future segments.

If the IMM command specifies new acceleration or jerk, the new value replaces the required value
for the rest of the XSEG motion. However, unlike the velocity case, the queued segments are not
recalculated. Therefore the new acceleration or jerk takes effect with some unspecified delay.

In some cases it is required to temporaryily pause a segmented motion while remaining on the
trajectory. The imm command allows specifying zero velocity for the leading axis in order to pause
the currently executed segmented motion. The controller will immediately start decelerating to
zero velocity and the motion will be paused on the current or one of the subsequent segments.

In order to resume the motion, the imm command for the leading axis should be sent with a non-
zero velocity value. The controller will immediately start accelerating to the specified velocity value.

There is an additional restriction that if the newly specified velocity is greater than the current
required velocity, the new velocity is not effective for already queued segments; it is effective for
the future segments only. In other words, lower velocity takes effect immediately; greater velocity
takes effect with some unspecified delay.

4.6.20 XSEGAMIN and XSEGAMAX

The controller provides two standard variables for configuring look-ahead processing angles:

> XSEGAMIN - minimal angle

> XSEGAMAX - maximal angle

The rounding option is applied only if the angle between segments is more than XSEGAMIN and
less than XSEGAMAX.

XSEGAMIN also defines the minimal angle for corner processing, and its value is used by default for
corner processing if /a is not specified.

4.6.21 XSEGRMIN and XSEGRMAX

The controller provides two standard variables for configuring arcs:

> XSEGRMIN - minimal arc radius

152Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

> XSEGRMAX - maximal radius difference

XSEGRMIN and ASEGRMAX are specified error threshold in encoder counts.

The controller returns an error if:

> arc1 or arc2 specify an arc radius which is less than XSEGRMIN.

> arc1 specifies center and final point coordinates with the difference between a radius from
the center to the initial point and a radius from the center to the final point is more than
XSEGRMAX.

4.7 Blended Segmented Motion

Blended segmented motion is a type of segmented motion that doesn’t provide look-ahead
capabilities, unlike Extended segmented motion. Both type of motions are intended for processing
a complex multi-axis trajectory and smoothing corners between segments, but do it in different
ways. The Extended segmented motion (XSEG) allows achieving highest throughput within the
defined axis limitations and the defined accuracy. The Blended segmented motion (BSEG) allows
passing along the trajectory with the defined timing constrains.

The following main capabilities are implemented in the Blended segmented motion:

> Support of up to 6 axes (up to 2 axes the first stage)

> Support of smoothing corners between two linear or linear and arc segments.

> The blended profile guaranties following the timing constrains, defined by the user
parameters, but doesn’t guaranty geometry of the resulting trajectory.

4.7.1 Motiondefinition through time intervals

Third order motion profile is defined with four variables, Motion Distance (S), Motion Time (),

Acceleration Time (), and Jerk Time ():

153Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Motion velocity V, acceleration A, and jerk J are derived from the time parameters as follows:

Total motion times is

The specified times should comply with the following limitations:

4.7.2 Motionblending

The following two motion diagrams shows:

154Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

1. Two sequential motions without blending

2. Two sequential motions with blending

In both diagrams, jerk sections are dropped for simplicity's sake.

If blending is active, sequential motions are executed without deceleration to zero. Actually, the
next motion starts acceleration stage once the previous motion achieves the start point of
deceleration stage. Then until the end of acceleration stage, the actual motion appears a mix of the
previous and the next motions. In one-axis motion, this approach provides smooth transition from
velocity of previous segment to velocity of the next segment. In multi-axis motion, blending
additionally provides geometrical smoothing of corners, although exact control of the smoothing
trajectory is not possible.

For sequential motions without blending, total motion time (including jerk sections) is

If blending is active, total motion time (including jerk sections) is

155Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.7.2.1 Motion blending in special cases

As it was stated in the section above, the specified times should comply with the following
limitations:

If the user specify time parameters that don’t comply with the specified limitations, the controller
provides the following handling of these specific cases:

> If the specified is greater than , the controller decreases to be equal to .

> If the specified is greater than , the controller decreases to be equal to .

4.7.3 ACSPL+ interface

The Blended segmented motion is a sequence of linear and arc segments.

The following commands control segmented motion:

Commands

> BSEG – Create blended segmented motion

> LINE – Add linear segment

> ARC1 – Add arc segment

> ARC2 – Add arc segment

> ENDS – Terminate the segment sequence

Related commands

> GO – Starts physical motion, if the BSEG/w command was specified.

> HALT – Stops the motion prematurely, even if not all segments were finished.

> KILL – Emergency motion stop with maximal deceleration (KDEC)

4.7.3.1 Supported motion parameters

The BSEG updates the following motion related parameters:

> Motion and Axis Statuses: AST, MST

> Vector velocity, acceleration and jerk: GVEL, GACC, GJERK

> Axis velocity: GVEC

> Motion queue status and motion type: GMQU, GMTYPE

> Trajectory vector distance: GPATH

> Elapsed motion time: GETIME

> Currently executed segment: GSEG

> Currently executed “original user” segment: GSEGU

> Segments buffer status: GSFREE

156Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

> Currently executed segment final point coordinates, defined by the user: TPOS. With a
blending, the final point is never reached.

4.7.3.2 Non-supported motion parameters

The following parameters are not updated by BSEG:

> Remaining motion time: GRTIME

> Motion phase: GPHASE

The motion parameters VEL, ACC, DEC, JERK are not used in BSEG.

4.7.3.3 BSEG command

Syntax

BSEG[/suffixes] (axis_list),
initial_position_axis1,initial_position_axis2,segment_time ,acceleration_time ,jerk_time [,dwell_
time]

Arguments

Arguments Comments

axis_list
Axes involved in BSEG motion, specified as axes numbers separated
by comma or as axes names separated by comma

initial_position_axis1 Initial position of the first axis

initial_position_axis2 Initial position of the second axis

segment_time
Initial segment time (Tm) in milliseconds. The specified segment
time will be used for all segments until segment_time argument is
specified in segment LINE, ARC1 or ARC2 command.

acceleration_time
Initial acceleration time (Ta) in milliseconds. The specified
acceleration time will be used for all segments until acceleration_
time argument is specified in LINE, ARC1 or ARC2 command.

jerk_time
Initial jerk time (Tj) in milliseconds. The specified jerk time will be
used for all segments until jerk_time argument is specified in LINE,
ARC1 or ARC2 command.

dwell_time

Optional] Initial dwell time between segments in milliseconds. If this
argument is specified, no blending will be done for all segments of
the motion. That means that the motion will be stopped at the end
of each segment for the specified dwell_time milliseconds.

Suffixes

Suffix Comments

157Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

w
Do not start until the GO command is executed. If the suffix is not specified, the
motion starts immediately after the first motion segment is defined.

4.7.3.4 LINE

This format of LINE is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path a linear segment that starts in the current
point and ends in the destination point.

Syntax

LINE[/suffixes] (axis_list),destination_point_axis1,destination_point_axis2
[,segment_time [,acceleration_time [,jerk_time [,dwell_time]]]]

Arguments

Arguments Comments

axis_list

Defines one or two axes, specified as axes numbers separated
by comma or as axes names separated by comma. The axes
should only be from those axes specified in the corresponding
BSEG command.

destination_point_axis1 Destination position of the first axis

destination_point_axis2 Destination position of the second axis

segment_time Only if suffix /m is specified: Segment time (Tm) in milliseconds.

acceleration_time Only if suffix /a is specified: Acceleration time (Ta) in milliseconds.

jerk_time Only if suffix /s is specified: Jerk time (Tj) in millisecond

dwell_time

Only if suffix /d is specified: Dwell time at the final point of the
segment in milliseconds.

With this suffix no blending will be done at the segment final
point.

4.7.3.5 ARC1

This format of ARC1 is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path an arc segment that starts in the current point
and ends in the destination point with the specified center point.

Syntax

ARC1[/suffixes] (axis_list),
 center_point_axis1,center_point_axis2,
 destination_point_axis1,destination_point_axis2, direction

[,segment_time [,acceleration_time [,jerk_time [,dwell_time]]]]

158Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Arguments

Argument Commments

axis_list

Defines one or two axes, specified as axes numbers separated
by comma or as axes names separated by comma. The axes
should only be from those axes specified in the corresponding
BSEG command.

center_point_axis1 Center point position for the first axis

center_point_axis2 Center point position for the second axis

destination_point_axis1 Destination position of the first axis

destination_point_axis2 Destination position of the second axis

direction

Direction is specified as + or -. It defines clockwise or
counterclockwise rotation depending on the encoder
connection: “+” for motion in the direction of increasing encoder
counts, or “-” for motion in the direction decreasing encoder
counts.

segment_time Only if suffix /m is specified: Segment time (Tm) in milliseconds.

acceleration_time Only if suffix /a is specified: Acceleration time (Ta) in milliseconds.

jerk_time Only if suffix /s is specified: Jerk time (Tj) in milliseconds

dwell_time

Only if suffix /d is specified: Dwell time at the final point of the
segment in milliseconds.
With this suffix no blending will be done at the segment final
point.

4.7.3.6 ARC2

This format of ARC2 is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path an arc segment that starts in the current point
and specified as the center point and rotation angle.

Syntax

ARC2[/suffixes] (axis_list),

 center_point_axis1,center_point_axis2,

 rotation_angle

[,segment_time [,acceleration_time [,jerk_time [,dwell_time]]]]

159Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Arguments

Arguments Comments

axis_list

Defines one or two axes, specified as axes numbers separated
by comma or as axes names separated by comma. The axes
should only be from those axes specified in the corresponding
BSEG command.

center_point_axis1 Center point position for the first axis

center_point_axis2 Center point position for the second axis

rotation_angle
Defines central angle of the arc, signed according to rotation
direction: plus on counter-clock-wise arc, minus on clock-wise arc.

segment_time Only if suffix /m is specified: Segment time (Tm) in milliseconds.

acceleration_time Only if suffix /a is specified: Acceleration time (Ta) in milliseconds.

jerk_time Only if suffix /s is specified: Jerk time (Tj) in milliseconds

dwell_time

Only if suffix /d is specified: Dwell time at the final point of the
segment in milliseconds.

With this suffix no blending will be done at the segment final
point.

4.7.3.7 Suffixes with commands LINE, ARC1, ARC2

Suffix Comments

m

Specifies segment time (Tm) in milliseconds. The suffix requires additional
parameter that specifies required segment time in milliseconds. The suffix defines
required segment time for the current segment and for all subsequent segments.
If the suffix is not specified, the previously defined segment time is used.

a

Specifies acceleration time (Ta) in milliseconds.

The suffix requires additional parameter that specifies acceleration time in
milliseconds.

The suffix defines required acceleration time for the current segment and for all
subsequent segments.

If the suffix is not specified, the previously defined acceleration time is used.

160Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

s

Specifies jerk time (Tj) in milliseconds. The suffix requires additional parameter that
specifies jerk time in milliseconds. The suffix defines required jerk time for the
current segment and for all subsequent segments. If the suffix is not specified, the
previously defined jerk time is used.

d
Specifies dwell time in milliseconds at the final point of the segment.

With this suffix no blending will be done at the segment final point.

Some suffixes require additional parameter to be specified. If more than one parameter is
required, the parameters should be separated by comma, and the order of parameters is fixed in
the following order:

1. Segment time (used with /m suffix)

2. Acceleration time (used with /a suffix)

3. Jerk time (used with /s suffix)

4. Dwell time (used with /d suffix)

4.7.3.8 HALT execution

HALT command is supported by BSEG motion and it is executed according with the following:

1. The motion is decelerated to zero velocity following the specified trajectory

2. BSEG motion is terminated and all subsequent segments are canceled

3. Halt deceleration time is taken from the currently executed segment as a currently
effective Ta value.

4. If Halt operation occurs within the acceleration phase, or within blending process, the Halt
process does not start immediately, but waits for the end of acceleration/blending, and
then executes as described above. As a result, maximum time of Halt may appear 2*Ta.

4.7.4 Two axesexample

BSEG (0,1),1000,1000,100,20,5 ! Create blended motion for axes 0 and 1 with
! initial point (1000,1000),
! initial segment time 100msec, initial
! acceleration time 20msec,
! initial jerk time 5msec

ARC1 (0,1),1000,0,1000,-1000,- ! Add arc segment with center (1000,0), final
! point (1000,-1000), clockwise rotation
! As no new time parameters are specified,
! the initial segment, acceleration and
! jerk time parameters are used for this segment

LINE (0,1),-1000,-1000 ! Add line segment with final point (-1000,-1000)
! As no new time parameters are specified,
! the initial segment, acceleration and
! jerk time parameters are used for this segment

ARC2/m (0,1),-1000,0,-3.141529,50 ! Add arc segment with center (-1000,0) and
! rotation angle -180°
! New segment time 50msec is specified

LINE/ma (0,1),1000,1000,25,10 ! Add line segment with final point (1000,1000)
! New segment time 25msec and acceleration

161Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

! time 10msec are specified
ENDS (0,1) ! End the segments sequence

The program specifies the following path:

Figure 4-7. Example of motion with segment commands

The BSEG command creates the Blended segmented motion for axes 0 and 1 and initial point (1000,
1000). Initial blended motion parameters are specified as following: initial segment time 100msec,
initial acceleration time 20msec and initial jerk time 5msec.

The motion does not start at this moment. Actual motion starts once the previous motion ends and
one or more segments are added.

The ARC1 command adds a first arc segment with center (1000,0), final point (1000,-1000), clockwise
rotation. The initial segment, acceleration and jerk time parameters are used for the first arc
segment.

The LINE command adds a second segment with final point (-1000,-1000). The initial segment,
acceleration and jerk time parameters are used for the first arc segment.

The ARC2 command adds a third arc segment with center (-1000,0) and rotation angle -180°. The
new segment time 50msec is specified.

The last LINE command adds a fourth segment with final point (1000,1000). For this segment new
segment time 25msec and new acceleration time 10msec are specified.

The ENDS command informs the controller, that no more segments will be specified for the motion.

4.8 Master/Slave Motion

4.8.1 MASTER Command

The MASTER command defines a formula for calculating the axis master value (MPOS – see SPiiPlus
Command & Variable Reference Guide).

Syntax:

MASTER MPOS(axis_index)=value

Only one component of the MPOS (master position) variable is allowed as MPOS(AXIS_INDEX).

In the simplest case the master value follows the feedback of another axis:

162Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

MASTER MPOS(0) = FPOS(1)

When the command executes, the controller stores the formula specified to the right of the equals
sign, and then calculates the master value MPOS(0) according to this formula (in the example
above, it simply assigns the current FPOS(1) value to MPOS(0)). The controller does this calculation
every controller period, independent of program execution. Even if the program that executed the
MASTER command terminates, the controller continues calculating the last specified master
expression, until the another master command for the same axis executes.

The master value can be redefined at any time by the application. If the program that executed the
above command then executes the command.

A more sophisticated use of the MASTER command connects the axis to another axis feedback with
a scale factor:

MASTER MPOS(0) = 2.3 * FPOS(1)

The following example defines axis 2 to follow the RPOS (reference position) of axis 0 translated
through a conversion table (cam motion):

MASTER MPOS(2) = MAPBY1(RPOS(0), Table)

In this example TABLE is a user-defined array that contains a table for conversion.

Similarly, the MASTER value may be connected to other sources such as the sum of two or more
axes, or to an analog input.

4.8.2 SLAVECommand

The SLAVE command creates a motion slaved to the master value of the specified axis.

Syntax:

SLAVE [/switch] axis_designation [,start_interval, end_interval]

Where switch can be:

w Create the motion, but do not start until the GO command has been issued.

p Use position lock instead of velocity lock (see Velocity Lock vs. Position Lock).

t Stall when approaching interval boundary (see Stalled Motion)

Slave motion is governed by the variables of the slaved axis. These include:

XSACC
Maximal allowed acceleration of the synchronous motion. If the master acceleration
exceeds this value, the slave comes out from synchronism.

SYNV
Allowed difference in master and slave velocities. Used in asynchronous motion to
determine if the synchronism can be re-established.

163Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

JERK
Default jerk. The slave uses this variable only in asynchronous motion to overtake
the master.

ACC
Default acceleration. The slave uses this variable only in asynchronous motion to
overtake the master.

VEL
Default velocity. The slave uses this variable only in asynchronous motion to
overtake the master.

Once started, slaved motion terminates only if a failure occurs, or one of the commands HALT, KILL,
or BREAK is executed. The HALT and KILL commands provide deceleration to zero and then the
next motion starts. If no next motion was created, the axis becomes idle. The BREAK command
provides smooth transition to the next motion without stopping, if a next motion is waiting in the
queue.

4.8.2.1 Synchronization

In slaved motion the slave is usually synchronized to the master, meaning that the APOS axis
reference follows the MPOS master value strictly or with a constant offset. However, there are two
cases when synchronism is not attainable:

> The slaved motion starts, and positions (position lock) or velocities (velocity lock) of the
master and slave differ. The motion starts as asynchronous.

> The motion was synchronized, but the acceleration of the master exceeds the allowed
limit (the XSACC variable of the axis) for the slave. The slave comes out of synchronization.

In both cases, the motion continues asynchronously, and the correspondence between APOS and
MPOS appears broken. The controller tries to regain synchronization by having the slave pursue the
master within the maximal allowed motion parameters. When the slave overtakes the master,
synchronization is re-established and the motion continues as synchronous.

Only individual axes are allowed to be used in a SLAVE command. Groups are not allowed. The
created motion starts immediately if the axis is idle; otherwise the motion waits in the motion
queue until all motions created before for the axis finish. The following command creates a slaved
motion of the 0 axis:

SLAVE 0

The slave axis in a master-slave motion may show its state (through the AST variable)
as accelerating and in motion even when the master axis is motionless. This reflects
the fact that the axis is set to follow the motion of the other axis and is not following a
motion profile of its own.

4.8.2.2 Velocity Lock vs. Position Lock

In velocity lock the slave velocity follows the master velocity. A constant offset between the master
and slave position is allowed. In position lock the slave position strictly follows the master position.

164Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The SLAVE command without the P switch activates a velocity-lock mode of slaved motion. When
synchronized, the APOS axis reference follows the MPOS with a constant offset:

APOS(0) = MPOS(1) + C

Where C is constant in velocity lock mode and is zero in position lock mode.

When the MSEG command includes the p switch (see MSEG, LINE, ARC1, ARC2, STOPPER Commands),
this activates the position lock mode of slaved motion. When synchronized, the APOS axis
reference follows the MPOS strictly:

APOS(0) = MPOS(1)

When the motion is asynchronous for any reason (see above), the controller tries to regain
synchronism by having the slave pursue the master with the maximal allowed motion parameters.
The difference between position lock and velocity lock manifests itself at the moment of regaining
synchronization:

> Velocity lock motion switches to synchronized when the slave velocity reaches the master
velocity (with allowed error defined by the SYNV variable of the slaved axis). At this
moment the difference between the master position and the slave position is latched as
the constant offset C, which then remains unchanged as long as the motion is
synchronous.

> Position lock motion switches to synchronized when the slave position overtakes the
master position, i.e., when APOS = MPOS.

Each time the motion loses and regains synchronization, the velocity lock offset C may latch a
different value. Under the same conditions, the position lock motion each time re-establishes the
strict equality APOS = MPOS.

4.8.2.3 Stalled Motion

When the SLAVE command does not include the T switch, the command applies no limits to the
slaved axis. The axis follows the master everywhere, unless a failure, such as limit switch activation,
occurs.

The SLAVE command with the T switch requires two additional parameters that define a permitted
interval for the slaved axis motion. For example, the command:

SLAVE/t 0, -1000, 2000

allows 0 axis motion only within the interval (-1000, 2000).

When the APOS axis reference approaches either of the two interval limit points, the slave comes
out from synchronism and stalls at that point until the MPOS master value allows restoration of
synchronism. In velocity lock, synchronization is regained when the MPOS changes its direction.
After regaining the offset, C may have a different value than before approaching the extreme
point. For position lock, synchronization is restored when the MPOS comes back into the permitted
interval. The axis stalls when the master leaves the permitted range and regains synchronization
when the master returns into the permitted range. The controller ensures a smooth approach to
the extreme points and a smooth return to synchronization.

165Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

4.9 PATH Command

The PATH command is similar to MPTP in that it generates multi-point motion, but in this case it
creates an arbitrary path motion.

Syntax:

PATH [/switch] axis_designators [,time_interval]

POINT axis_designators, coordinate [,coordinate] [,velocity] [,time_interval]

MPOINT axis_designators, point_matrix, number_of_points [,time_interval]

ENDS

Where switch can be one or a combination of:

r The point coordinates are relative to the previous point.

w Create the motion, but do not start until the GO command.

c
Use the point sequence as a cyclic array, that is, after positioning to the last point return
to the first point and repeat.

t
Non-uniform time interval; the time interval is specified for each point along with the
point coordinates.

Points for arbitrary path motion are defined by POINT and MPOINT commands (see MPTP, POINT,
MPOINT, and ENDS Commands).

The ENDS command terminates the point sequence. After the ENDS command, no POINT or MPOINT
commands for this motion are allowed.

The trajectory of the motion follows through the defined points. Each point presents the instant
desired position at a specific moment. Time intervals between the points are uniform, or non-
uniform as defined by the T switch.

Motion generated by the PATH command does not use the standard motion profile. Typically, the
time intervals between the points are short, so that the array of the points implicitly specifies the
desired velocity in each point. For this reason, variables VEL, ACC, DEC, JERK have no affect on this
motion.

If the time interval does not coincide with the controller cycle, the controller provides linear
interpolation of the points.

Commands HALT, KILL, KILLALL (see HALT Command and KILL and KILLALL Commands) are executed
in a specific way with this type of motion; as with other motion types, the controller provides a
smooth deceleration profile using DEC (HALT command) or KDEC (KILL, KILLALL commands) for the
leading axis. However, unlike other motions types, the controller does not provide following the
motion trajectory during deceleration.

Arbitrary path motion created without the T switch implies uniform intervals between the points. If
PATH is not specified with the T switch, the TIME_INTERVAL argument has to be included. The
argument defines time interval between the motion points in milliseconds.

166Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

If PATH is specified with the T switch, it must not have TIME_INTERVAL specification. Instead, the
TIME_INTERVAL must be specified for each point as an additional argument for the POINT command
or as additional array column in the MPOINT command.

The BREAK command (see BREAK Command) is not supported when using the PATH
command.

4.10 Spline Motion

4.10.1 Spline Motion Theory

General theory of spline interpolation is a topic of numerous books and articles. A classical
introduction isA Practical Guide to Splines by Carl De Boor.

This section contains only basic facts required for understanding spline implementation in the
SpiiPlus controller.

4.10.2 MainDefinitions

PV (position-velocity) and PVT (position-velocity-time) refer to a motion mode that constructs the
motion trajectory from spline segments. You specify the end position (P) and the end velocity (V)
for each segment of motion. The difference between PV and PVT is that PVT motion also requires
specification of the time interval for each segment, whereas PV motion uses a predefined constant
time interval.

In PV/PVT mode the controller provides cubic spline interpolation between the specified points. As
a spline mode, it minimizes the amount of data that the host-based program (or ACSPL+ program)
needs to generate to produce the multi-axis arbitrary profile and provides precise trajectory
generation.

A spline is a special function defined piecewise by polynomials. The spline is a piecewise polynomial
function spread over an interval [a,b] consists of polynomial pieces, such that:

a = t0 < t1 < t2 < ...< tk-2 < tk-1 = b

The points: ti are called knots. The vector is called a knot vector for the spline. If the knots are
equidistantly distributed in the interval [a,b], we say the spline is uniform, otherwise we say it is
non-uniform.

In many cases functional dependence between two or more values cannot be expressed as an
analytic formula. The most common presentation of those functions is a table of function values in
specific points.

For example, a machine axis was graduated with an external laser interferometer. The result of
graduation is a table like the following:

Commanded position (x) 100 200 300 400 500 600 700 …

Actual position (p) 103 199 294 402 500 598 705 …

The table defines a functional dependence p=f(x) that cannot be expressed analytically.

167Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The argument values for x in the definition table are knots, and the function values for p are
control points.

A 3rd order polynomial spline provides an approximation of the table-driven function that can
provide the function value not only in the knots, but at any point. Between each two knots the
spline is expressed as:

where coefficients a0, a1, a2, a3 have different values at different intervals.

The SPiiPlus controller also supports two-dimensional splines. In this case, the definition table is a
two-dimensional matrix. Knot points are defined for two arguments x and y, and the matrix
contains corresponding p values. Knot values divide the XY plane into rectangular cells. The matrix
defines the function values in the cell vertices. Within each cell, the interpolating spline is
expressed as:

4.10.3 PVSPLINE Command

The PVSPLINE command is used to create spline motion.

Syntax:

PVSPLINE [/switch] axis_designators [,time_interval]

POINT axis_designators, coordinate, [coordinate,] velocity [,time_interval]

MPOINT axis_designators, point_matrix, number_of_points [,time_interval]

ENDS

Where switch can be one or a combination of:

r The point coordinates are relative to the previous point.

w Create the motion, but do not start until the GO command.

c
Use the point sequence as a cyclic array, that is, after positioning to the last point return
to the first point and repeat.

t
Non-uniform time interval; the time interval is specified for each point along with the
point coordinates.

Points for PV and PVT motion are defined by the POINT and MPOINT commands (see POINT
Commandand MPOINT Command).

168Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The POINT and MPOINT commands serve the same function for defining points along
the path as the POINT and MPOINT commands for multiple point-to-point motion (see
MPTP, POINT, MPOINT, and ENDS Commands); however, the controller employs a
different algorithm when calculating the spline motion.

The ENDS command terminates the point sequence. After the ENDS command, no POINT or MPOINT
commands for this motion are allowed.

The trajectory of the motion follows through the defined points. Time intervals between the points
are uniform, or non-uniform as defined by the t switch.

Motion generated by the PVSPLINE command does not follow the standard motion profile.
Variables VEL, ACC, DEC, JERK have no effect on this motion. The motion profile is defined
exclusively by the positions and velocities specified by the POINT and MPOINT commands.

The HALT command (see HALT Command) is executed in a specific way with this type of motion. As
with other motion types, the controller provides a smooth deceleration profile with the DEC value
of the leading axis. However, unlike other motions types, the controller does not follow the motion
trajectory during deceleration.

Spline motion created without the t switch implies uniform intervals between the points. If
PVSPLINE does not include the t switch, the time_interval argument has to be included. The
argument defines time interval between the motion points in milliseconds.

If PVSPLINE includes the t switch, the time_interval argument must not be included. Instead, the
time interval must be specified for each point as an additional argument for the POINT command or
as additional array row in the MPOINT command.

The PVSPLINE command itself does not specify any point, so the created motion starts only after
the first point is specified. The points of motion are specified by the POINT or MPOINT commands
that follow the PVSPLINE command.

4.10.3.1 POINT Command

The POINT command for the spline interpolation specifies two values per axis that is involved: the
first value defines the coordinate of the end point of the segment; the second value specifies the
velocity at the end point. The coordinate is specified in the user units of the axis; the velocity is
specified in user units per second.

The following fragment illustrates adding a point with PV spline motion.

PVSPLINE (0,1,3),10 Create PV spline motion for axes 0,
1, and 3. Points are given at 10
millisecond intervals.

POINT (0,1,3),200,100,300,1000,2000,1500 Add a point with coordinates 0=200,
1=100, 3=300; velocities at the point
are V0=1000, V1=2000, V3=1500.

For each segment the controller constructs a third-order polynomial and calculates the reference
coordinates using the polynomial.

The spline provides exact track through the specified points and exact specified velocity at the
points. The spline also provides continuous velocity at all intermediate points.

169Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

In general the spline does not guarantee acceleration continuity at the connection points.
However, the acceleration can be continuous if the proper velocity values are specified, and many
host-based programs that prepare data for PV-interpolation actually calculate velocity values that
will provide continuous acceleration.

The time interval between the points may be either uniform or non-uniform. In both cases the
time interval is not required to be an integer or to be equal to an integer number of controller
cycles. The controller uses the exact specified time interval to calculate the interpolated reference
positions.

The following drawing illustrates the PV spline interpolation:

T

2T

3T

4T

5T

6T

7T

8T

T – the controller cycle,
 – the specified motion points,

à – the specified velocity values,
 – the interpolated reference points

In the POINT command the axis_designators must specify the same axes in the same order as in
the axis_designators of the corresponding PVSPLINE command.

The other arguments contain different values depending on corresponding PVSPLINE command.

If the related motion command is PVSPLINE without the t switch for M axes, there has to be 2*M
arguments: 2 arguments per axis involved. The arguments specify the end point coordinates and
the coordinate velocities at the end point in the following order:

> The end point coordinate for each axis involved (M values)

> The velocity at the end point for each axis involved (M values)

Each coordinate is specified in user units of the corresponding axis, each velocity is specified in user
units per second.

If the related motion command is PVSPLINE/t for M axes, there have to be 2*M+1 arguments: 2*M
arguments specify the end point coordinates and velocities, and the last argument specifies the
time interval between the previous and the current point. The time is specified in milliseconds.

4.10.3.2 MPOINT Command

The MPOINT command adds an array of points to PV or PVT spline motion.

The arguments of the MPOINT command are:

> axis_designators - must specify the same axes in the same order as in the axes-
specification of the corresponding mptp or path command.

> point_matrix - name of declared two dimensional array.

> number_of_points - specifies how many points are added to the motion by the command.

170Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Before the MPOINT command can be executed, an array must be declared and filled with
the point coordinates. Each row of the array contains coordinates of one point.

If the related motion command is PVSPLINE without the t switch, for M axes the matrix must
contain 2*M rows, 2 rows per axis involved. The values in each column specify:

> in row 1: the end point coordinate for each axis involved (M values)

> in row 2: the velocity at the end point for each axis involved (M values)

Each coordinate is specified in user units of the corresponding axis, each velocity is specified in user
units per second.

If the related motion command is PVSPLINE/t, for M axes the matrix must contain 2*M+1 rows:

> M rows for end point coordinates

> M rows for end point velocities

> plus additional row for the time interval between the points. The time is specified in
milliseconds.

4.10.4 Spline MotionVariables

As mentioned, the spline motion does not use the values of the VEL, ACC, DEC, JERK variables for
motion profile construction. The motion profile is constructed using the coordinates and velocities
specified in the segment end points.

While the motion is in progress the controller updates the following read-only variables every
controller cycle.

> APOS and RPOS are updated as for any other motion and read the motion result.

> Bits in AST, MST are updated as for any other motion and read the motion state.

> GSEG is updated for the leading axis with the number of the currently executed segment.

> GSFREE is updated for the leading axis with the number of free cells in the segment
queue. If GSFREE is zero, the segment queue is full and the next coming point or mpoint
command will be delayed until the required number of cells will be freed.

> GVEC is updated with the instant velocity for each axis involved. The GVEC values build up a
vector of instant velocity and also can be used for retrieving a tangent vector.

> GPATH, GVEL, GACC, GJERK, GPHASE, GRTIME are updated while the motion is in progress.

The following example illustrates how the PVSPLINE command can be used for adding points on-
the-fly. The example also shows a simple approach to synchronization between the host-based
program that calculates the points and the controller that executes the motion.

The host-based program calculates the desired points and transmits the coordinates via Ethernet
link. The motion involves 6 axes. Therefore, each point specification contains 12 real numbers (6
coordinates and 6 velocities).

Because transmitting each point separately would be a very inefficient use of the Ethernet, the
host calculates the desired points in advance and transmits them in batches of 50 points. The
controller then executes the motion. As soon as the controller is ready to accept the next batch of
points and the host is ready to send that batch, the next transmission occurs, and so on.

171Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

The pace of the host and the controller do not have to be identical. However, the host is assumed
to be fast enough to calculate the next 50 points before the controller has moved through the
previous 50 points.

The controller executes the following program:

real Points(12)(50) Declare an array of 50 points. The host will
write the coordinates and velocities to the array.

int N,HSync,NBuf Declare a synchronization variable (initiated
to zero by default).

PVSPLINE (0,1,2,3,4,5,6), 10 Create PV for axes 0, 1, 2, 3, 4, 5 and 6.
Points are given at 10-millisecond intervals.

WHILE Sync >= 0 Continue until the host writes negative
number to Sync.

TILL Sync Wait until the points are received. Once the
host has filled the Points array, it writes
the Sync variable with a number of points
written to the Points array.

IF Sync > 0 Sync greater than 0 indicates that the host
has finished the point generation.

MPOINT (0,1,2,3,4,5,6), Points, Sync Add points to the Points matrix.
Sync = 0 The controller informs the host that the next

batch is expected. The motion through the
points already received from the host has not
completed, but the controller is ready to
receive more points.

END End if.
END End while.
ENDS (0,1,2,3,4,5,6) End PVSPLINE.
STOP

The program running on the host looks like the following pseudo code:

double HPoints(12)(50);
int N, HSync;
HANDLE Com;
open communication, start program in buffer NBuf of the controller;
while (Continue)
calculate N (<= 50) points in array Hpoints;
acsc_WriteReal(Com, NBuf, "Points" , 0, 11, 0, N-1, HPoints, 0) ;
acsc_WriteInteger(Com, NBuf, "Sync", -1, -1, -1, -1, &N, 0);
do
acsc_ReadInteger(Com, NBuf, "Sync", -1, -1, -1, -1, &HSync, 0);
while HSync;
reset Continue to zero if all points have been calculated;
end;
N = -1
acsc_WriteInteger(Com, NBuf, "Sync", -1, -1, -1, -1, &N, 0);

Synchronization between the host and the controller is provided by the Sync user variable. When
the host has finished transmitting the next batch of points to the controller, it writes to Sync the
number of points in the batch. The controller waits for non-zero Sync and then adds the points to

172Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

the motion. When the controller has added the points, it writes zero to Sync, which signals to the
host to transmit the next batch of points.

When the host comes to the end, it writes -1 to Sync, to indicate the end of the motion.

4.11 Open-Loop Operation (Torque Control)

The open-loop motor mode is often referred as a torque-control mode. The following table
summarizes differences between three motor modes:

Table 4-1. Motor Modes

Mode Disabled Open-loop Enabled

State of the Drive Enable output Off On On

Calculation of control loop
algorithm

No No Yes

Correspondence of Reference
Position (RPOS) and Feedback
Position (FPOS)

RPOS
follows
FPOS

RPOS
follows
FPOS

RPOS is calculated
according to the
commanded motion.

FPOS follows the RPOS
as provided by control
loop algorithm.

Position Error (PE) Zero Zero

The control algorithm
calculates

PE = RPOS - FPOS

Voltage at the drive output Zero
Proportional
to DCOM

As calculated by the
control algorithm

Bit 1 in the MFLAGS variable enables or disables open-loop mode. The following diagram explains
transition between the three modes:

173Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Open -loop
Mode

Enabled
Mode

Disabled
Mode

Command
DISABLE

Command
DISABLE

Command
MFLAGS.1 = 0

Command
ENABLE if
MFLAGS.1=1

Command
ENABLE if
MFLAGS.1=0

Command
MFLAGS.1 = 1

The circles in this diagram represent the motor modes and the arrows with rectangles show the
controller commands that switch the controller from one mode to another.

As shown in the diagram, a motor can be switched from the enabled mode to the open-loop mode
and back without changing to the disabled mode. The controller provides a smooth transition
between the modes. Even if the motor experiences uncontrolled movement while in the open-
loop mode, switching back to the enabled mode does not cause any motor jump. However, be
careful if you execute a motion while the controller is in open-loop mode. Once the command
switches back to enabled mode, the controller continues the motion from the point where it finds
the motor. No motor jump occurs, but the motion trajectory and the final point may be shifted by
the value of uncontrolled offset in the open-loop mode.

While in open-loop mode, the controller calculates the drive voltage output based on the DCOM
variable. The DCOM variable sets the drive output as a percentage of the maximum available drive
output voltage. For example, the UDI provides differential drive output in the range from -10V to
+10V. Therefore, assigning 100 to DCOM provides +10V on the drive output, assigning -100 provides
-10V, and assigning 0 provides 0V.

The following program fragment shows an example of torque control implementation through the
open-loop mode.

ENABLE 0 Enable the 0 motor.
PTP/f 0,400,100 Move to the point where the contact

search begins. Provide low (search)
velocity of 100 count/sec in the
final point.

JOG/v 0,100 Move to the contact point using
the search velocity.

TILL IN0.4; KILL 0; MFLAGS0.1=1; DCOM0=30 Wait for the signal from the contact
sensor. Kill the motion. Switch to
open-loop mode. Apply 30% of the
maximum torque.

WAIT 50; DCOM0=10 Wait 50 milliseconds and then change
torque to 10% of the maximum torque.

WAIT 100; MFLAGS0.1=0; PTP 0,400 Wait 100 milliseconds, then switch

174Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

off the open-loop mode and move away
from the contact point.

4.12 Step Velocity Profile (Non-Zero Minimal Velocity)

Many applications with step motors require the motion velocity to be restricted from below. In this
case, the motion profile has non-zero start and finish velocity. To handle this case you can use the
NVEL variable (see SPiiPlus Command & Variable Reference Guide) that specifies minimal velocity
for each axis. If an application sets a non-zero NVEL for some axis, the controller uses the value as
start and finish velocity in any motion related to the axis except for an axis that is governed by the
PATH or PVSPLINE command.

4.12.1 The NVEL Variable

NVEL is an array of 8 real values, one per axis. A non-zero value in any NVEL element determines
that the motion of the corresponding axis will be executed with non-zero start and finish velocities.

If an NVEL element is zero, the normal motion profile starts from zero velocity and finishes at zero
velocity. If an element is non-zero, in the beginning of motion the velocity immediately jumps to
the value specified in the NVEL element and then continues normal motion profile. In the end, the
motion approaches the final point at velocity specified in the NVEL element, then the velocity
immediately drops to zero.

In a typical application, the step motor does not require acceleration build-up phases; the motion
profile is trapezoidal:

Time

GPHASE = 0

2

4

6

VEL

NVEL

KILL and HALT commands are also affected, i.e., they slow down the velocity to the value specified
in the NVEL element and then the velocity drops to zero.

4.12.2 Special NVEL Cases

4.12.2.1 Specified Velocity Less Than NVEL

If the absolute value of the VEL value is less than the NVEL value, the VEL value is ignored. In this
case the motion profile is rectangular:

175Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

Time

GPHASE = 0

4

NVEL

Also ignored are the velocity specified in a motion command or in an IMM command if its absolute
value is less than NVEL. In all cases, the actual motion velocity is not less than NVEL.

4.12.2.2 Multi-Axis Motion

Multi-axis motion is not typical for an axis with non-zero minimal velocity. If, however, the axis is
involved in multi-axis motion, the controller uses NVEL as follows:

> If the axis is a leading axis in the motion, its NVEL is used as a minimal vector velocity in the
motion profile

> If the axis is not leading, its NVEL is ignored.

In both cases, the axis velocity can be lower than the NVEL value. Therefore, be careful in defining
multi-axis motion that involves both stepper motors and servo motors.

4.12.2.3 NVEL and Non-Default Connection

If a non-default connection is specified (see Non-Default Connections), the axis and the motor are
different entities. In this case, NVEL refers to the axis, but not to the motor. For example, if NVEL0 is
set to 500, the velocity of any motion of the X axis will be limited from below to 500 units per
second irrespective of which motor is affected by the motion.

176Version 3.02

ACSPL+ Programmer's Guide
4. ACSPL+ Motion Programming

5. Inputs and Outputs
The controller includes digital and analog inputs and outputs. This chapter discusses the following:

> General purpose digital inputs and outputs

> General purpose analog inputs and outputs

Safety inputs and digital encoder implementations are discussed in other sections of this guide
(see Fault Handling).

The controller provides a set of general-purpose inputs and outputs that have no predefined
function. You can assign a function to any input/output as required by your application.

The exact number of general purpose digital inputs and outputs depends on the controller
configuration.

5.1 Digital Inputs and Outputs

Digital Inputs - A digital input is a binary signal in the form of low or high voltage that the controller
accepts from an external source such as a switch or a relay.

Digital Outputs - A digital output is a binary signal that the controller provides to an external
acceptor such as a LED or actuator.

5.1.1 Addressing Digital I/Os

Digital Inputs are presented by the ACSPL+ read-only integer array variable: IN. Digital Outputs are
presented by the ACSPL+ integer array variable: OUT.

Each member of the array is a bitmask of input or output states, respectively. During the system
configuration process, array members are bound to a certain unit, according to amount of I/O that
the unit supports.

When you are operating a system whose configuration is currently unknown, you can
use the Terminal command: #SI (see SPiiPlus ACSPL+ Command & Variable Reference
Guide for details on Terminal commands) to find out the correlation between the
IN/OUT array indexes and I/O.

You address a digital I/O using the following format:

IN(PORT_#).BIT_# or INPORT_#.BIT_# – Input

OUT(PORT_#).BIT_# or OUTPORT_#.BIT_# – Output

Where:

IN

OUT

Integer array IN, a read-only array

Integer array OUT

port_
#

The port number to which the bits belong. The controller’s digital input/output
ports are numbered from 0 to N-1, where N is the number of controller ports (see
the controller’s Hardware Guide for the number of input/output for your controller).

177Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

.bit_
#

The specific bit within the port. Each port is divided into 32 bits that are numbered
from 0 to 31. For example:

IN0.1 – input 1 of port 0

IN3.19 – input 19 of port 3

OUT0.5 – output 5 of port zero

OUT3.19 – output 19 of port 3

Rather than explicitly designating the port number, you can use an integer user-defined variable
that equates to the number. In this case you have to include the parentheses, for example:

IN(U_VAR).1 - where U_VAR is an integer variable the value of which equates to the port number.

If the controller provides only 32 inputs or less, all inputs/outputs are located in port
zero. In this case the port number can be omitted, and input is referred as: IN.0 (for
input 0), IN.22 (for input 22), OUT.0 (for output 0), OUT.2 (for output 2), etc.

5.1.2 Querying Digital I/Os

The IN and OUT arrays can be queried like any other variable in the SPiiPlus MMI Application Studio
COMMUNICATION TERMINAL. Each element of the array is read as a 32-bit binary number.

Example:

: ?IN0 What is the status of input 0

10111001,00011010,00000100,00000000

: ?IN0.1,IN0.2 What is the status of bits 1 & 2 of input 0

0

1

: ?OUT(0,3) What is the status of outputs 0 and 3

10111001,00011010,00000100,00000000 10111001,00011010,00000100,00000000

10111001,00011010,00000100,00000000 10111001,00011010,00000100,00000000

5.1.3 Assigning Outputs

You can assign only OUT elements. The IN array is read-only.

Each digital input/output is treated as one binary bit. The low voltage level corresponds to zero (or
“clear”) and high voltage level corresponds to one or (“set”).

Examples of assignment to the elements of an OUT are:

OUT0.1 = 0 Set output OUT0.1 to zero

178Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

OUT0.1 = 1 Set output OUT0.1 to one

OUT0.1 = V0 If V0 = 0, set OUT0.1 to zero. Otherwise, set OUT0.1 to 1

OUT0.15 = IN0.10 Copy state of input IN0.10 to output OUT0.15

OUT0.15 = ~ IN0.10 Copy inverse state of input IN0.10 to output OUT0.15

OUT6.1 = IN0.0 & IN0.1 Set OUT6.1 to logical AND of inputs IN0.0 and IN0.1

OUT0 = 0x0101
Set signals OUT0.0 and OUT0.8 to one. Set all other bits of
OUT0 to zero

OUT0 = OUT0 | 0x0101
Set signals OUT0.0 and OUT0.8 to one. Do not alter other
bits of OUT0

OUT0 = OUT0 & ~0x0101
Set signals OUT0.0 and OUT0.8 to zero. Do not alter other
bits of OUT0.

OUT0 = (OUT0 & ~0x0101)|(V1 &
0x0101)

Copy bits 0 and 8 from V1 to OUT0. Do not alter other bits
of OUT0

5.1.4 Digital I/O in Conditional Commands

Commands such as if, while and till are always followed by a logical expression. Using I/O in the
logical expression provides program branching options that are I/O state-dependent.

Examples:

if ^IN0.1 goto L
Go to label L only if IN0.1 is zero

while IN0.1 &
IN0.2

Execute the subsequent commands up to command end while both IN0.1
and IN0.2 are one

till IN0.10 Wait until IN0.10 becomes one

till IN0 &
0x0101

Wait until at least one of IN0.0 and IN0.8 becomes one.

5.1.5 PLC Implementation

The Programmable Logic Controller (PLC) is often used to manage digital inputs and outputs.
SPiiPlus controllers provide implementation of PLC without separate PLC hardware. The techniques
described in this section provide implementation of PLC functionality by the controller. This
approach provides an easy integration of PLC program with motion control. For example, a motion
can be started when a condition calculated by the PLC program is satisfied, and an output can be
activated when a motion starts or terminates.

There are several options for implementing a PLC program:

179Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

> Implement the PLC program in a separate buffer. This is the most suitable approach if the
PLC program must not interfere with motion, and has few connections to motion
programs. The PLC program runs in parallel with motion programs in other buffers, and any
desired connections are provided via global variables.

> Mix motion programs and PLC program in the same buffers. This approach provides a very
close interaction between PLC and motion programs, resulting in faster reaction time, but
in general has a more complex structure.

> Split the PLC program into two different parts running in two different buffers. This
approach is most suitable when a time-critical part of the program has to operate faster
than the rest of the program. PLC programs run at either a fast or slow scanning rate, and
you must assign a greater priority one buffer using the PRATE variable.

> Implement a part of the PLC program as a set of autoroutines. This approach provides a
very fast and interrupt-like response to critical conditions, because the autoroutine
condition is checked each controller cycle.

The following is an example of a PLC program implemented in a separate buffer using autoroutines
for fast response:

1. real T1
2. int Bits
3. Start:
4. OUT0.0 = MST0.#INPOS
5. if T1 <= TIME
6. if Bits.0 T1 = T1 + 30000 else T1 = T1 + 15*60000 end
7. Bits.0 = ^Bits.0
8. end
9. OUT0.4 = IN0.4 & Bits.0
10. goto Start
11. on IN0.15; killall; ret

Line1 – Definition of local variable T1 that is used to store the next switch time. T1 may be defined as
integer, but as a real, it can provide continuous running for an extended period without overflow.
The program relies on the automatic initialization of all local variables to zero when they are
declared.

Line2 – Definition of a local variable: Bits. In this program only one bit of Bits is used. One
temporary integer variable can be used for storing 32 temporary bits.

Line3 – A label: Start. A typical case in PLC programming is a long program cycle that executes to the
end and returns to the beginning. In the example shown above, the execution period is quite short
even with default rate of ‘one Line per each controller cycle’. In a long program, the execution cycle
can reach hundreds of milliseconds.

This is a good reason to divide a typical PLC program into slow and fast sections.

Line 4 – OUT0.0 reflects the ‘in position’ state of the motor. If the motor is not in position, the
output is 0. If it is in position, the output is 1.

Lines 5-9 – OUT0.4 controls a periodic activity that must be executed every 15 minutes for a 30-
second period. It is executed only if IN0.4 is active. In a typical application, the output might be
connected to lubrication pump.

180Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

Line10 – Returns the motion to the Start point.

Line11 – An autoroutine that provides extra fast response to IN0.15, typically an emergency input.
The whole autoroutine is implemented in one line providing an immediate kill of all motions within
one controller cycle when input port 0 bit 15 is 1.

5.1.6 Digital I/O inAutoroutines

You may use digital I/O as conditions for autoroutines (see Autoroutines). The autoroutine can be
very useful for PLC implementation and fault handling.

For example:

ON IN0.0 ! When input#0=0
OUT0.4=1 ! Set output#4 to 1
disp “Activates motor”
RET ! Ends the autoroutine

5.1.7 Using HSSI I/O Extension

Use the High-Speed Synchronous Serial Interface (HSSI) channels available in the SPiiPlus controllers
for connecting additional inputs and outputs. ACSPL+ supports access to HSSI through the standard
arrays EXTIN and EXTOUT.

The arrays can be queried, indexed and used in expressions like other ACSPL+ variables. For
detailed information about the HSSI interface see the HSSI Modules Hardware Guide.

5.1.8 SPI Communication

An SPI interface connected to the DSP is supported by ACSPL+ Commands in the IDMsm and ECMsm
devices.

5.1.8.1 ACSPL+ Commands and Variables for SPI

The following ACSPL+ Commands and variables are used in implementing an SPI interface.

5.1.8.1.1 SPICFG

Description

SPICFG configures and initializes the SPI interface.

Syntax

SPICFG (SlaveIndex, Mode, NumberOfWords, Polarity,Size,Frequency)

Arguments

SlaveIndex
Index of the EtherCAT slave in the EtherCAT network, or 0 in case of
IDMsm/ECMsm/UDMsm

Mode

The mode of the SPI interface. The following modes are supported:

> 0 - Slave

> 1 - Master

> 2 - SlaveListenOnly

181Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

> 3 - Disable

> 4 - Master Single Transaction (Used by ACSPL+ SPIWRITE)

NumberOfWords
Number of SPI Data Words used by the application (FW to SPI). Range:
{0,8}
Not relevant in case of Master Single Transaction Mode

Polarity

Clock Polarity.

Four types are available:

> Rising Edge – 0

> Rising Edge with Delay – 1

> Falling Edge – 2

> Falling Edge with Delay - 3

Size Data size in bits, the range is {1-16}.

Frequency
An integer number which defines the frequency. The range is 200KHz-
10MHz, limited values are supported (defined in the table below).

Frequency Values Supported

Value Frequencey (kHz)

2 800

3 1000

4 1500

5 2000

6 2500

7 3000

8 3500

9 4000

10 5000

Return Value

None

Comments

When the SPI interface is not required anymore, SPICFG should be called with Mode=3 (disable)
parameter.

182Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

Example

5.1.8.1.2 SPIRXN

Description

SPIRXN is a variable that shows the number of actual words that contain data transmitted from the
SPI external interface. The range is from 0 to 8.

Accessibility

Read-only

Comments

SPIRXN value is 0 if the SPI is disabled. This variable is supported by the UDMsm, IDMsm and ECMsm
products only.

5.1.8.1.3 EXTIN

Description

EXTIN is an integer array, the size of which is determined by the total number of SPI input signals in
the system, and reads the current state of the inputs. The number of inputs depends on the
number of SPI modules in the system.

Comments

The SPIRXN variable is updated every cycle with the number of active elements.

Tag

42

Accessibility

Read-Only

Related ACSPL+ Variables

EXTOUT, IN

COM Library Methods and .NET Library Methods

ReadVariable, GetExtInput, GetExtInputPort

C Library Functions

acsc_ReadInteger, acsc_GetExtInput, acsc_GetExtInputPort

5.1.8.1.4 EXTOUT

Description

EXTOUT is an integer array, the size of which is determined by the total number of SPI output
signals in the system, which can be used for reading or setting the current state of the outputs. The
number of outputs depends on the number of SPI inputs in the system.

183Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

Syntax

EXTOUT(index) = value

Arguments

index A number between 0 and 511.

value value ranges from -2147483648, 2147483647, Default = 0.

Comments

When used with an SPI interface in master mode, the EXOUT function should be used.

The SPICFG function sets the number of elements which contain data.

Tag

43

Accessibility

Read-Write

Related ACSPL+ Variables

EXTIN, OUT

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetExtOutput, SetExtOutput, GetExtOutputPort, SetExtOutputPort

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetExtOutput, acsc_SetExtOutput, acsc_
GetExtOutputPort, acsc_SetExtOutputPort

5.2 Analog Inputs and Outputs

The controller provides a set of analog inputs and outputs. This section discusses the general
purpose analog I/Os whose number is controller dependent.

> Analog input - accepts analog signal from an external source, such as a sensor or a
potentiometer.

> Analog output - provides analog signal to an external receiver, such as an actuator or a
measuring device.

Analog inputs/outputs have no predefined function in the controller. You can connect signals to
inputs/outputs and process them as required by the application.

5.2.1 Addressing Analog I/Os

Analog Inputs are presented by the ACSPL+ read-only integer array variable: AIN. Analog Outputs
are presented by the ACSPL+ integer array variable: AOUT.

Each member of the array is a value of input or output, respectively. During the system
configuration process, array members are bound to a certain unit, according to amount of IO, that
the unit supports.

184Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

When you are operating a system whose configuration is currently unknown, you can
use the Terminal command: #SI (see SPiiPlus ACSPL+ Command & Variable Reference
Guide for details on Terminal commands) to find out the correlation between the
AIN/AOUT array indexes and I/O.

You address an analog I/O using the following format:

AIN(PORT_#)[.BIT_#] or AINPORT_#[.BIT_#] – Input

AOUT(PORT_#)[.BIT_#] or AOUTPORT_#[.BIT_#] – Output

Where:

AIN

AOUT

Integer array AIN, a read-only array

Integer array AOUT

port_
#

The port number to which the bits belong. The controller’s input/output ports are
numbered from 0 to N-1, where N is the number of controller ports (see the
controller’s Hardware Guide for the number of input/output for your controller).

.bit_#

The specific bit within the port. Each port is divided into 32 bits that are numbered
from 0 to 31. For example:

AIN0.1 – input 1 of port 0

AIN3.19 – input 19 of port 3

AOUT0.5 – output 5 of port zero

AOUT3.19 – output 19 of port 3

The range of the AIN and AOUT arrays depends on the type of the input or output and the bit
resolution of the Analog-to-Digital or Digital-to-Analog conversions.

> Example: For ±10V analog outputs with 16-bit Digital-to-Analog conversion resolution, the
AOUT range is from -32768 (for –10V) to +32767 (for +10V).

> Example: For ±1.25V analog inputs with 14-bit Digital-to-Analog conversion resolution, the
AIN range is from -8192 (for –1.25V) to +8192 (for +1.25V).

If an analog output is connected to a drive, it has a dedicated destination and cannot be
used as a general purpose analog output.

For model-dependent analog I/O information (for example, the number and range of inputs and
outputs) see the controller’s Hardware Guide.

5.2.2 Assigning Analog Outputs

You can assign any variable (ACSPL+ or user-defined) to an entity of AOUT. For example, ACSPL+
variables:

> FPOS – Feedback position

185Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

> FVEL – Feedback velocity

> FACC – Feedback acceleration

FVEL is calculated by digital differentiation of FPOS.
FACC is calculated by digital differentiation of the FVEL variable.
The ACSPL+ FVFIL variable defines a power of the smoothing filter used in the FVEL
calculation (see SPiiPlus Command & Variable Reference Guide).

Example:

The following ACSPL+ program assigns X-axis feedback position to output #3 and acceleration to
output #1. In the example the user variables: SF1 and SF2 are scale factors.

real SF1, SF2;
SF1=0.01 ; SF2=0.001; !Define scaling factors
While 1;
AOUT3 = FPOS0 * SF1;
AOUT1 = FACC0 * SF2;
END

If the acceleration signal is too noisy, increase FVFIL.

186Version 3.02

ACSPL+ Programmer's Guide
5. Inputs and Outputs

6. Fault Handling
Fault handling is not only a concern for isolating motion faults, it is also a vital concern to personal
and equipment safety.

Safety features are necessary to protect both the equipment and you from potential injury.
SPiiPlus controllers include numerous safety-related features, but the final responsibility for the
safe use of the controller in a particular application lies with you. Before you create your application
make sure that you thoroughly read and understand this chapter.

This chapter addresses:

> Safety Controls

> Working with Fault Procedures

6.1 Safety Control

Some alarms, limits, and errors involve protection against potentially serious bodily
harm and equipment damage. Be aware of the implications before changing or
disabling any alarm, limit, or error.

Safety control is one of the highest-priority tasks of the controller. The controller continually
monitors safety conditions each controller cycle, in parallel to its other activities.

The controller sets one of the fault bits of the ACSPL+ FAULT variable when it detects a
malfunction. The response to a fault may vary from sending a fault message to complete
termination of all activities. For each fault type you can enable/disable the default controller
response or define your own autoroutine response.

6.1.1 Typesof Malfunctions

The controller monitors numerous safety conditions that may indicate different hardware or
software malfunctions (faults). The most frequent causes of faults are:

Table 6-1. Types of Malfuntions

Type of Fault Examples

User error Defining a required velocity that is invalid or beyond the limits.

Improper or
broken
wiring

A loose connection in the feedback encoder wiring.

Power
amplifier
malfunction

The power amplifier malfunctions and sends a fault signal to the controller.

187Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Type of Fault Examples

Motor
malfunction

A motor overheats.

Controlled
plant
malfunction

The Emergency Stop input is activated.

Controller
hardware
malfunctions

The Main Processor Unit (MPU) and the Servo Processors (SPs) work
together to detect malfunctions in the controller. Examples include the
servo processor alarm and the servo interrupt.

6.1.2 How the Controller DetectsMalfunctions

To detect malfunctions the controller monitors safety inputs, such as limit switches, and internal
safety conditions, such as comparing the reference position with the software limits.

Internal safety conditions may consist of a static formula, such as checking the acceleration limit, or
may include time dependencies, such as measuring the time interval between two interrupts to
detect servo interrupt faults.

Some safety conditions are a mixture of both techniques. For example, position error control is
based on both a static condition, whether a motor is positioned at a certain location, and a time
dependency, how long the motor is positioned at the location.

6.1.3 Faults

When the controller detects a malfunction, it raises a specific fault bit. Fault bits are grouped into
ACSPL+ FAULT and S_FAULT variables.

In certain cases, you may want to define which fault conditions are examined in a specific
application. The ACSPL+ FMASK and S_FMASK variables specify which fault conditions must be
examined in a particular application.

See SPiiPlus Command & Variable Reference Guide for complete details of these variables.

6.1.3.1 The FAULT Variable

The FAULT variable is an integer array containing eight elements (corresponding to the number of
motors), where each element is made up of a set of bits. Each bit indicates a motor fault. Motor
faults are related to a specific motor, power amplifier, or Servo Processor. Examples include
tracking error and motor overheat.

6.1.3.2 The S_FAULT Variable

S_FAULT is a scalar variable, where each bit represents the aggregate status of a particular fault.
The bits of S_FAULT are divided into two categories:

> Aggregated motor faults – Once the controller raises a bit in any element of FAULT, it
immediately raises the corresponding bit of S_FAULT. Therefore, each bit of S_FAULT is an
OR aggregate of the corresponding bits in all elements of FAULT.

188Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> System faults such as Emergency Stop and Time Overuse that are not related to any
specific motor.

6.1.4 Controller Response

The controller response to a fault can vary according to the requirements of your application:

> No response.

> Default response – One or more predetermined actions. You can disable the default
response for any fault.

> Autoroutine response – User-defined actions implemented in an autoroutine. In the
autoroutine you select a controller fault and controller responses to the fault. An
autoroutine can replace the default response or supplement it with additional actions.

6.2 Safety Control Summaries

A fault is a critical error for which the controller provides a default response. You can control the
response: deactivating it or changing it.

6.2.1 Summary of Faults and Default Responses

A fault can be either a motor or system fault. Motor faults refer to a specific motor, power amplifier,
or Servo Processor and affect the state of the corresponding bit for that element of the FAULT
variable. System faults do not refer to a specific motor. The corresponding bits are located in the S_
FAULT variable.

Faults may be simulated for purposes of testing and debugging by use of the FAULTSIM variable.
Setting any of the bits in the variable actuates the corresponding fault.

For most controller-detected faults there is a default response, which is normally executed
automatically when the fault occurs. Your ACSPL+ application can simply allow the default response
for a fault or you can do either or both of the following:

> Disable the default response by using ACSPL+ variables FDEF and S_FDEF.

> Create an autoroutine (implementing your preferred response) activated by the
occurrence of the fault. If desired, you can leave the default response enabled so that it
will execute together with the autoroutine.

In addition to the above, each motor fault is either:

> Latched in the MERR variable (see SPiiPlus Command & Variable Reference Guide)
indicating that the motor is disabled or killed, in which case you can build a little routine
that checks the value of MERR and resets it by running the FCLEAR or ENABLE (ENABLEALL)
command, or

> Set in the MERR variable only so long as the fault condition exists.

Right Limit restricts the motion in the positive direction and the Left Limit in the
negative direction.

The faults reported by the ACSPL+ fault variables, as well as those latched in MERR are:

189Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Table 6-2. Faults and the Controller's Default Response

Bit Designator Type Fault Description Default Response

0 #RL Motor

RIGHT LIMIT. The
controller raises the fault
bit when the right limit
switch is activated.

The controller kills
the violating
motor.

As long as the fault
is active, the
controller kills any
motion that tries
to move the motor
in the direction of
the limit. Motion to
return to the
allowed range of
motion is allowed.

1 #LL Motor

LEFT LIMIT. The controller
raises the fault bit when
the left limit switch is
activated.

The controller kills
the violating
motor.

As long as the fault
is active, the
controller kills any
motion that tries
to move the motor
in the direction of
the limit. Motion to
return to the
allowed range of
motion is allowed.

2 #NT Network

NETWORK ERROR. The
controller raises the fault
bit when a loss of
network is detected.

The controller
disables all axes
until a valid
network Sync
signal is received.

190Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Bit Designator Type Fault Description Default Response

5 #SRL Motor

SOFTWARE RIGHT LIMIT.
The controller raises the
fault bit when the motor
reference position
(RPOS) is greater than
the software right limit
margin (SRLIMIT).

The controller kills
the violating
motor. As long as
the fault is active,
the controller kills
any motion that
tries to move the
motor in the
direction of the
limit. Motion in the
direction away
from the limit is
allowed.

6 #SLL Motor

SOFTWARE LEFT LIMIT.
The controller raises the
fault bit, when the motor
reference position
(RPOS) is less than the
software left limit margin
(SLLIMIT).

The controller kills
the violating
motor. As long as
the fault is active,
the controller kills
any motion that
tries to move the
motor in the
direction of the
limit. Motion in the
direction away
from the limit is
allowed.

7 #ENCNC Motor

ENCODER NOT
CONNECTED. The
controller raises the fault
bit when the primary
encoder is not
connected.

The controller
disables the
violating motor.
The error code is
latched in the
MERR variable and
remains active
until you resolve
the problems and
enable the motor
again or issue the
FCLEAR command.

191Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Bit Designator Type Fault Description Default Response

8 #ENC2NC Motor

ENCODER 2 NOT
CONNECTED. The
controller raises the fault
bit when the secondary
encoder is not
connected.

No default
response.

The error code is
latched in the
MERR variable, and
remains active
until you resolve
the problems and
enable the motor
again or issue the
FCLEAR command.

9 #DRIVE Motor

DRIVE ALARM. The
controller raises the fault
bit when the signal from
the drive reports a
failure.

The controller
disables the
violating motor.

10 #ENC Motor

ENCODER ERROR. The
controller raises the fault
bit when the primary
encoder malfunctions.

The controller
disables the
violating motor.
The error code is
latched in the
MERR variable and
remains active
until you resolve
the problems and
enable the motor
again or issue the
FCLEAR command.

11 #ENC2 Motor

ENCODER 2 ERROR. The
controller raises the fault
bit when the secondary
encoder malfunctions.

The controller
disables the
violating motor.
The error code is
latched in the
MERR variable and
remains active
until you resolve
the problems and
enable the motor
again or issue the
FCLEAR command.

192Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Bit Designator Type Fault Description Default Response

12 #PE Motor

NON-CRITICAL POSITION
ERROR. The controller
raises the fault bit when
the position error (PE)
limit is exceeded. The
limit depends on the
motor state and is
defined by the following
variables:

ERRI if the motor is idle
(not moving)

ERRV if the motor is
moving with constant
velocity

ERRA if the motor is
accelerating or
decelerating

None.

13 #CPE Motor

CRITICAL POSITION ERROR.
The controller raises the
fault bit when the
position error (#PE)
exceeds the value of the
critical limit. Whereas #PE
errors occur during
normal operation, #CPE is
assumed to occur
outside normal
operation parameters
and #CPE is greater than
#PE.

The critical limit depends
on the motor state and is
defined by the following
variables:

CERRI if the motor is idle
(not moving)

CERRV if the motor is
moving with constant
velocity

The controller
disables the
violating motor.

193Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Bit Designator Type Fault Description Default Response

CERRA if the motor is
accelerating or
decelerating

14 #VL Motor

VELOCITY LIMIT. The
controller raises the fault
bit when the absolute
value of the reference
velocity (RVEL) exceeds
the limit defined by the
XVEL variable.

The controller kills
the violating
motor.

15 #AL Motor

ACCELERATION LIMIT. The
controller raises the fault
bit when the absolute
value of the reference
acceleration (RACC)
exceeds the limit
defined by the XACC
variable.

The controller kills
the violating
motor.

16 #CL Motor

CURRENT LIMIT. The
controller raises the fault
bit, when the RMS
current calculated in the
Servo Processor exceeds
the limit value defined
by either the XRMS,
XRMSD, or XRMSM
variable.

The controller
disables the
violating motor.

17 #SP Motor

SERVO PROCESSOR
ALARM. The controller
raises the fault bit when
the axis Servo Processor
loses its synchronization
with the main processor.
The fault indicates a fatal
problem in the
controller.

The controller
disables the
violating motor.
The error code is
latched in the
MERR variable and
remains active
until you resolve
the problems and
enable the motor
again or issue the
FCLEAR command.

194Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Bit Designator Type Fault Description Default Response

20 #HSSINC Motor

HSSI NOT CONNECTED.
The controller raises the
fault bit if the HSSI
expansion module is not
connected.

None.

23 #EXTNT
External
Network Error

There is no
EtherCAT device
connected.

The controller
disables all axes.

24 #TEMP MPU Overheat

Activated at CPU
temperature > 90°C or
System temperature >
70°C

S_
SETUP.#USGTEMP
= 0: No response
S_
SETUP.#USGTEMP
= 1: Default
response is to
disable all axes

25 #PROG System

PROGRAM FAULT. The
controller raises the fault
bit when a run time error
occurs in one of the
executing ACSPL+
programs.

The controller kills
all motors.

26 #MEM System
MEMORY FAULT. The user
application requires too
much memory.

The controller kills
all motors.

27 #TIME System

TIME OVERUSE. The user
application consumes
too much time in the
controller cycle.

No default
response.

195Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Bit Designator Type Fault Description Default Response

28 #ES System

EMERGENCY STOP. The
controller raises the fault
bit when the ES signal is
activated.

The controller
disables all motors.

It does
not
stop
the
progra
m
buffer
s.

29 #INT System

SERVO INTERRUPT. The
servo interrupt that
defines the controller
cycle is not generated.
The fault indicates a fatal
controller problem.

The controller
disables all motors.

30 #INTGR System

INTEGRITY VIOLATION.
The controller raises the
fault bit when an
integrity problem is
detected.

No default
response

6.2.2 Summary of Safety Inputs

Safety inputs and internal safety conditions are the building blocks for safety control. Safety inputs
receive binary signals (low, represented by “0”, or high voltage, represented by “1”), from external
sources such as a switch or a relay. Unlike general-purpose inputs that have no predefined
function, each safety input is dedicated to specific function.

There are six different motor safety inputs and one system safety input. The controller provides a
complete set of safety inputs for each motor. For example there are eight left limit inputs: one per
motor.

The state of the motor safety inputs is stored in the ACSPL+ SAFIN variable, while the current state
of the Emergency Stop input is stored in the ACSPL+ S_SAFIN variable. A high level of a physical
signal (voltage) raises the corresponding bit and a low level drops the corresponding bit.

The safety inputs occupy the same bit numbers in SAFIN and S_SAFIN as the corresponding faults in
FAULT and S_FAULT. Therefore, the same constants are used for bit addressing.

The physical signal connected to a safety input may indicate a safety violation with either high or
low level. For instance on one axis, the right limit switch may indicate a safety violation with high
voltage, and the left limit switch with low voltage. Use the ACSPL+ SAFINI and S_SAFINI variables to
define which level is active, thereby eliminating the need for hardware inverters.

196Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Table 6-3. Safety Inputs

Bit Fault
Fault
Category

Fault Description

0 #RL Motor RIGHT LIMIT SWITCH

1 #LL Motor LEFT LIMIT SWITCH

9 #DRIVE Motor DRIVE ALARM - alarm signal from a drive.

28 #ES System
EMERGENCY STOP - alarm signal from the controlled
plant.

6.2.3 Summary of Safety-Related Variables

The FAULT, S_FAULT, SAFIN, S_SAFIN variables are read-only (SAFIN, S_SAFIN can be assigned
values, but these apply only when the Simulator is used). The SAFINI, S_SAFINI, FMASK, S_FMASK,
FDEF, S_FDEF variables are protected and can be assigned only in protected mode (see Application
Protection).

Table 6-4. Safety Related Variables

Name Size Access Remarks

FAULT

8
(one
per
axis)

Read-only
MOTOR FAULTS. Each motor fault occupies one bit.
Not all bits are occupied by faults. Only those bits
that correspond to motor faults are meaningful.

FDEF

8
(one
per
axis)

Read-write
(protected
mode)

FAULT DEFAULT MASK. The variable bits control
availability of the default responses to motor
faults. The default value for all the bits, 1, enables
the default response. If a bit is 0, the default
response is disabled.

Only those bits that correspond to motor faults are
meaningful.

FMASK

8
(one
per
axis)

Read-write
Protected

MOTOR FAULT MASK. The variable bits control
whether the controller checks for motor faults.
The default value 1 causes the controller to check
for the fault associated with that bit. Only those
bits that correspond to motor faults are
meaningful.

S_FAULT Scalar Read-only

SYSTEM FAULTS. Each system fault and each
aggregated motor fault occupies one bit. Only
those bits that correspond to the faults are
meaningful.

197Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Name Size Access Remarks

S_FDEF Scalar
Read-write
(protected
mode)

SYSTEM FAULT DEFAULT MASK. The variable bits
control availability of the default responses to
system faults. The default value for all the bits, 1,
enables the default response. If a bit is 0, the
default response is disabled.

S_FMASK Scalar
Read-write
(protected
mode)

SYSTEM FAULT MASK. The variable bits control
whether the controller checks for system faults.
The default value 1 causes the controller to check
for the fault associated with that bit. Only those
bits that correspond to system faults are used.

S_SAFIN Scalar

Read-only
(read/write
for
Simulator)

SYSTEM SAFETY INPUTS. Bit #ES reads the current
state of the Emergency Stop input. Other bits are
meaningless.

S_SAFINI Scalar
Read-write
(protected
mode)

SYSTEM SAFETY INPUTS INVERSION. Bit #ES defines
which value of S_SAFIN.#ES bit causes a fault.
Other bits are not used.

SAFIN

8
(one
per
axis)

Read-only
(read/write
for
Simulator)

MOTOR SAFETY INPUTS. Each meaningful bit reads
the current value of a motor safety input. Only
those bits that correspond to the motor safety
inputs are meaningful.

SAFINI

8
(one
per
axis)

Read-write
(protected
mode)

MOTOR SAFETY INPUTS INVERSION. A bit of the
variable defines which value of the corresponding
SAFIN bit causes a fault.

Only those bits that correspond to the meaningful
SAFIN bits are used.

STODELAY

8
(one
per
axis)

Read-write
Used to configure the delay time between the STO
fault indication and the default response (disable)
to the fault.

6.2.4 Integrity Control

Integrity Control validates the firmware and the user application stored in the controller. The
following groups of files are stored in the internal file system of the nonvolatile memory:

> Firmware: files SB4.EXE, SB4.BIN, SBAUTO.BT

> Default configuration values: files PAR.### and PARn.### , where n = 0, 1…

> Default ACSPL+ programs: files ACSPLnn.###, where nn = 00, 01, 02…

> Default Servo Processor programs: files SP.### and/or SPn.###, where n = 0, 1…

198Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> Saved configuration values: files PAR.$$$ and PARn.$$$, where n = 0,1…

> Saved ACSPL+ programs: files ACSPLnn.$$$, where nn = 00, 01, 02…

Firmware and the default files are present in the controller from the beginning and can be
replaced only by the Upgrade and Recovery Wizard of the SPiiPlus MMI Application Studio.

The saved files compose the user application. Saved files are created or replaced by the memory
management commands (See SPiiPlus Command & Variable Reference Guide).

Integrity Control is active for the all files specified above. The controller stores the size and
checksum of each file, existing or created. The controller then compares the stored size/checksum
with size/checksum of the actual file to expose damaged files. Validation is performed
automatically on power-up. After power-up you can use the IR command to validate files (see
Integrity Report Command).

6.2.4.1 Integrity Violation Fault

The bit of the Integrity Violation fault resides in the S_FAULT variable, and can be addressed as: S_
FAULT.#INTGR or S_FAULT.30.

The fault has no default response. The masks S_FMASK and S_FDEF do not affect processing of the
bit.

The controller automatically validates integrity on power-up before loading the user application.
Therefore, you are able to define an AUTOEXEC program that checks the Integrity Violation fault
and reports the error as required.

6.2.4.2 Integrity Report Command

The #IR Communication Terminal command activates integrity validation and provides a report of
current integrity state.

If any integrity problem is detected, the command raises fault bit S_FAULT.#INTGR.

The report displays a list of files. Each list entry displays a file name, expected file size and
checksum of the file and actual file size and checksum.

The following is an example of an integrity report::

#IR
Size Checksum
Registered Actual Registered Actual

C:\
sb1218pc.frm 001DA050 001DA050 DF4F97F0 DF4F97F0
model.inf 000014C3 000014C3 C5CC6B93 C5CC6B93
array.txt 00000010 00000010 00D4FF89 00D4FF89
1.prg 000002CB 000002CB D19BF636 D19BF636
ECAT.XML 00052B0A 00052B0A 4D35D447 4D35D447

C:\SB4\SP\
 sp.### 0004FF0C 0004FF0C BCBB37F5 BCBB37F5

ADJ0.$$$ 0000017D 0000017D 8E1A3690 8E1A3690
 sp.##1 0003DC8E 0003DC8E 0B678F5D 0B678F5D
c:\sb4\startup\

Acspl_e.$$$ 0000010B 0000010B 6C441150 6C441150
Par.$$$ 000001E9 000001E9 704245FA 704245FA

199Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Par0.$$$ 00000D7C 00000D7C 21F7589A 21F7589A
Par1.$$$ 00000D7C 00000D7C 471078B2 471078B2
Par2.$$$ 00000D7D 00000D7D 12FA61B8 12FA61B8
Par3.$$$ 00000D7C 00000D7C 9142BBDC 9142BBDC
Par4.$$$ 00000D7C 00000D7C B65BDCF2 B65BDCF2
Par5.$$$ 00000D7C 00000D7C DB74FE08 DB74FE08
Par6.$$$ 00000D7C 00000D7C 008E1F1E 008E1F1E
Par7.$$$ 00000D7C 00000D7C 25A74034 25A74034
Par8.$$$ 00000D7C 00000D7C 4BC06150 4BC06150
Par9.$$$ 00000D7C 00000D7C 70D98266 70D98266
Par10.$$$ 00000DF1 00000DF1 8142E4DE 8142E4DE
Par11.$$$ 00000DF1 00000DF1 A561FBF9 A561FBF9
Par12.$$$ 00000DF1 00000DF1 C3801414 C3801414
Par13.$$$ 00000DF1 00000DF1 E79F2A2F E79F2A2F
Par14.$$$ 00000DF1 00000DF1 0BBE414A 0BBE414A
Par15.$$$ 00000DF1 00000DF1 2FDD5865 2FDD5865
Par16.$$$ 00000DF1 00000DF1 53FC6F80 53FC6F80
Par17.$$$ 00000DF3 00000DF3 2D5F0297 2D5F0297
Par18.$$$ 00000DF1 00000DF1 9C3A9DB6 9C3A9DB6
Par19.$$$ 00000DF1 00000DF1 C059B4D1 C059B4D1
Par20.$$$ 00000DF1 00000DF1 966603F5 966603F5
Par21.$$$ 00000DF1 00000DF1 BA851B10 BA851B10
Par22.$$$ 00000DF1 00000DF1 DEA4322B DEA4322B
Par23.$$$ 00000DF1 00000DF1 02C34946 02C34946
Par24.$$$ 00000DF1 00000DF1 26E26061 26E26061
Par25.$$$ 00000DF1 00000DF1 4B01777C 4B01777C
Par26.$$$ 00000DF1 00000DF1 6F208E97 6F208E97
Par27.$$$ 00000DF1 00000DF1 933FA5B2 933FA5B2
Par28.$$$ 00000DF1 00000DF1 B75EBCCD B75EBCCD
Par29.$$$ 00000DF1 00000DF1 DB7DD3E8 DB7DD3E8
Par30.$$$ 00000DF1 00000DF1 B18A230C B18A230C
Par31.$$$ 00000DF1 00000DF1 D5A93A27 D5A93A27
Acspl01.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl02.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl03.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl04.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl05.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl06.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl07.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl08.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl00.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl09.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl10.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl11.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl12.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl13.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl14.$$$ 00004E27 00004E27 6F167A54 6F167A54
Acspl15.$$$ 00004E27 00004E27 6F167A54 6F167A54

C:\sb4\user\
oleg 00000024 00000024 4144536B 4144536B

200Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

I 00000330 00000330 011453BC 011453BC
V 00002EF0 00002EF0 414453A7 414453A7

System Integrity is OK
:

6.2.5 Report of Realtime Usage Command

The #U Terminal command provides a report of Real Time Usage. The controller continuously
measures the time taken by realtime tasks. For details on realtime tasks see Realtime and
Background Tasks.

When the #U command is received, the controller analyzes the measured times during the last 50
controller cycles and calculates minimal, maximal and average time. The results are reported in
percentages.

You can also use the ACSPL+ USAGE variable (see SPiiPlus Command & Variable
Reference Guide) to monitor the usage. This variable is particularly useful in
autoroutines for halting a program if the MPU usage is excessive.

6.2.6 ApplicationProtection

Application protection does the following:

> "Protects the user application from unintentional modification.

> "Prevents harmful operator intervention while the application is running.

> "Restricts erroneous changes to critical data and execution of potentially dangerous
operations while the application is running.

At any time the user can enable or disable application protection. When application protection is
disabled, none of the protections specified above apply.

When application protection is enabled, the controller is said to be in protected mode. When
application protection is disabled, the controller is said to be in configuration mode.

At any time the user can intentionally delete the application in the controller. This operation brings
the system to factory default state and disables all protections.

6.2.6.1 Protected Features

In protected mode the following operations are disabled:

> Assignment to any protected variable.

> Editing, or opening, an ACSPL+ buffer (only if the PFLAGS.#DISABLE bit of the affected
buffer is set).

> Commands #C, #X, #S, #P, #SR, #XS, #XD, #BR and #BS (if the PFLAGS.#DISABLE bit of the
affected buffer is set).

> All memory management commands, for example, #SAVE, #LOAD, etc.

> All operations that change the flash memory.

> Changing SP program or adjustment data.

201Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> SETSP function.

> Connect command.

> Any command received via any communication channel if the Communication Shutdown
bit is set.

Protected mode affects all controller commands, including:

> Any command sent to the controller for immediate execution.

> Any command executed in a controller buffer (unless the Privileged bit is set).

> Any operation initiated by SPiiPlus C Library or by an SPiiPlus Tools.

Any command that involving a prohibited action will be rejected with the error "Protection
violation."

Protection does not affect power-up operations of the controller. Therefore, the user application
stored in the flash memory will be loaded on power-up, including the saved values of all protected
variables and all saved ACSPL+ programs. If one or more programs contains an AUTOEXEC label, the
program will automatically start executing from this label.

6.2.6.2 Enhanced Application Protection

The following are enhanced application protection features:

1. Saving unprotected buffers to non-volatile memory

2. Using protected commands, such as SETSP / GETSP / SETCONF / GETCONF, in the
Communication Terminal

3. SETPROTECTION settings (which standard variables are selected to be protected) remains
saved in non-volatile memory after removing protection

The following backward compatibility feature is introduced in this version:

> The addition of an Enhanced Application Protection” bit in S_SETUP

> If OFF, execution of protected commands is prevented (backward compatible
behavior)

> If ON, execution of protected commands is allowed (default option)

6.2.6.3 CFG Variable

The standard controller variable CFG (Configuration) indicates whether the controller is in protected
or configuration mode. The variable is read-only.

In configuration mode, CFG is 1. In protected mode, CFG is 0.

6.2.6.4 Protection of Variables

When the controller is in protected mode, any assignment to a protected variable is prohibited. By
default the controller defines a set of protected variables. These are:
AFLAGS BAUD BOFFTIME BONTIME CERRA CERRI CERRV CONID DELI DELV E_FREQ E_SCMUL E_TYPE
E2_SCMUL E2_TYPE E2FAC EFAC ENTIME ERRA ERRI ERRV FDEF FMASK FVFIL GATEWAY IMASK IOMASK
LOWD LOWV MFF MFLAGS NVEL ONRATE PFLAGS PRATE RVFIL S_FDEF S_FMASK S_SAFINI S_SETUP
SAFINI SCCOFFS SCGAIN SCPHASE SCSOFFS SETTLE SLLIMIT SMCCPAR SRLIMIT STEPF STEPW SUBNET
SYNV TARGRAD TCPIP TCPIP2 TCPPORT UDPPORT VELBRK XACC XCURI XCURV XRMS XRMSD XRMSM

202Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

XRMST XRMSTD SRMSTM XSACC XSEGRMAX XSEGRMIN XVEL SLABITS SLAFF SLBIASA SLBIASB SLCBITS
SLCFIELD SLCHALL SLCNP SLCOFFS SLCORG SLCPRD SLCRAT SLCROUT SLCSLIP SLDBITS SLDRA SLDRAIF
SLDROUT SLDRX SLDZMIN SLDZMAX SLEBIASA SLEBIASB SLFRC SLFRCD SLHRS SLIFAC SLIFILT SLIKI SLILI
SLIKP SLIOFFS SLPBITS SLPKI SLPKP SLPKPIF SLPKPSF SLPLI SLPMAX SLPMIN SLPROUT SLSTHALL
SLVB0DD SLVB0DF SLVBITS SLVB0ND SLVB0NF SLVKI SLVKIIF SLVKISF SLVKP SLVKPIF SLVKPSF SLVLI
SLVNFRQ SLVNWID SLVNATT SLVSOF SLVSOFD SLVRAT SLVROUT SLXROUT SLZFF SLVB1DD SLVB1DF
SLVB1ND SLVB1NF E_MODE E_PAR_A E_PAR_B SLFRCN SLDZTIME SLVKPDCF SLPKPDCF SLVKIDCF
SLGCAXN

The user is able to change the protection attribute for each variable individually.

The following command specifies the variable to be protected:

setprotection variable = 1

The following command specifies the variable to be not protected:

setprotection variable = 0

The variable is any standard variable name except the read only variables.

Only standard variables can be protected. Assignment to a user variable is allowed in any controller
mode.

If a variable represents an array, all elements of the array share the same protection attribute.

Therefore the array as a whole can be protected or not protected. Protection cannot be specified
for individual elements of the array.

The setprotection command can be executed only in configuration mode.

6.2.6.5 Protection of ACSPL+ Programs

While the controller is in configuration mode, the user can enter and edit a program in any buffer.

Protected mode restricts access to the program buffers. Restriction can change from buffer to
buffer and is defined by the bit of PFLAGS variable.

Each element of the PFLAGS array corresponds to one buffer. The following bit defines protection
of a buffer:

Variable PFLAGS.#NOEDIT (bit 1) when raised disables buffer editing while in protected mode. The
default of the bit is 0.

Variable PFLAGS.#NOVIEW (bit 6) when raised disables buffer viewing while in protected mode. The
default of the bit is 0.

By default, the PFLAGS variable is protected and cannot be changed in protected mode.

6.2.6.6 Privileged Buffer

One or more buffers can be marked as privileged. An ACSPL+ program in a privileged buffer is
executed irrespective of the protection mode. In other words, in protected mode the program in a
privileged buffer is executed as if there is no protection.

Variable PFLAGS.#PRIVLG (bit 4) marks the corresponding buffer as privileged. The default of the
bit is 0.

203Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

The program in the privileged buffer can change any protected variable, write to SP variables, start
and stop any other ACSPL+ program and execute any other action that in a regular buffer would
cause protection violation.

6.2.6.7 Communication Shutdown

The user can disable executing commands and queries received via communication channels while
the controller is in protected mode.

The following bits of the COMMFL variable control the communication shutdown:

> Bit 7, Disable Commands: controls the communication in protected mode. If the bit is
raised, the controller ignores any command received via communication channels except
the queries that start from '?' character. The bit is not effective if the controller is in
configuration mode. The default of the bit is 0.

> Bit 8, Disable Queries: controls the communication in protected mode. If the bit is raised,
the controller ignores any query received via communication channels. The bit is not
effective if the controller is in configuration mode. The default of the bit is 0.

If both bits are raised, the controller in protected mode ignores any commend or query received
via any communication channel.

Communication shutdown does not affect executing the ACSPL+ programs in the buffers.

Communication shutdown does not prevent sending unsolicited messages from the controller as a
result of executing the DISP or SEND command. Also communication shutdown does not affect
executing the INPUT command, i.e., the controller accepts from a communication channel
messages that are in response to the INPUT command.

Therefore, if communication shutdown is in effect, the communication with the controller is
restricted to messages sent by the DISP or SEND command and messages accepted by the INPUT
command.

6.2.7 Report Safety Configuration

The #SC command reports the current safety system configuration.

The controller response includes the following:

> active safety groups

> the configuration of each fault for each motor

For example:

#SC
Bit Code Fault 0 1 2 3 4 5 6 7
0 #RL Right Limit K K K K K K K K
1 #LL Left Limit K K K K K K K K
2 #NT Network error D D D D D D - -
3 #FAN Cooling Fan Fault - - - - - - - -
4 #HOT Overheat - - - - - - - -
5 #SRL Software Right Limit K K K K K K K K
6 #SLL Software Left Limit K K K K K K K K
7 #ENCNC Encoder Not Connected D D D D D D D D
8 #ENC2NC Encoder2 Not Connected - - - - - - - -
9 #DRIVE Drive Alarm KD KD KD KD KD KD KD KD
10 #ENC Encoder Error D D D D D D D D
11 #ENC2 Encoder 2 Error - - - - - - - -

204Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

12 #PE Position Error
13 #CPE Critical Position Error KD KD KD KD KD KD KD KD
14 #VL Velocity Limit K K K K K K K K
15 #AL Acceleration Limit K K K K K K K K
16 #CL Overcurrent KD KD KD KD KD KD KD KD
17 #SP Servo Processor Alarm D D D D D D D D
25 #PROG Program Error K K K K K K K K
26 #MEM Memory Overuse
27 #TIME Time Overuse
28 #ES Emergency Stop KD KD KD KD KD KD KD KD
29 #INT Servo Interrupt D D D D D D D D
30 #INTGR Integrity Violation D D D D D D D D
31 #FAILURE Component Failure D D D D D D D D

The following designations are used in the report:

--- – fault detection is disabled (FMASK=0)

(blank) – fault response is disabled (FDEF=0) or no default response is defined

K – response is kill

D – response is disable

KD – response is kill-disable

+ – generalized fault

6.3 Working with Faults

6.3.1 Addressing the Fault Bits

Faults are represented as bits in the ACSPL+ variables FAULT and S_FAULT.

FAULT is an integer array containing eight elements (corresponding to the number of motors),
where each element is made up of a set of bits. Each bit indicates one motor fault. Motor faults are
related to a specific motor, power amplifier, or Servo Processor. Examples include Tracking Error,
and Motor Overheat.

To address a specific motor fault bit, start with the specification of the FAULT element, followed by
the bit selection operator (dot) and then the corresponding fault designator.

For example:

FAULT(2).#LL
Addresses the left limit fault bit of axis 2. The bit is raised if the 2 left limit
switch is activated.

FAULT
(3).#DRIVE

Addresses the drive fault bit of axis 3. The bit is raised if the 3 drive safety
input is active.

S_FAULT is a scalar variable with two categories of bits:

> Aggregated motor faults. Once the controller raises a bit in any element of FAULT, it
immediately raises the corresponding bit of S_FAULT. Therefore, each bit of S_FAULT is an
OR aggregate of the corresponding bits in all elements of FAULT.

> System faults that are not related to any specific motor, such as Emergency Stop and Time
Overuse.

205Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

The aggregated motor fault bits occupy the same bit positions as the corresponding motor fault
bits in the FAULT variable. Use the designators of the motor faults to address the aggregated
motor fault bits.

Examples:

S_FAULT.#LL
Addresses the aggregated Left Limit fault bit. The bit is raised if the Left
Limit switch of any motor is activated.

S_
FAULT.#DRIVE

Addresses aggregated Drive fault bit. The bit is raised if the Drive safety
input of any motor is active.

Use the bit designators of the system faults to address the system fault bits.

Examples:

S_FAULT.#ES
Addresses the Emergency Stop fault bit. The bit is raised when the
Emergency Stop safety signal is active.

S_
FAULT.#PROG

Addresses the Program fault bit. The bit is raised when any program has
failed due to a run-time error.

206Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.3.2 Querying Faults

The variables FAULT and S_FAULT are queried like any other variable. The controller reports the
status of each meaningful bit.

Example:
?S_FAULT

0 OFF Right Limit (#RL)
1 ON Left Limit (#LL)
2 OFF Network error (#NT)
3 OFF Cooling Fan Fault (#FAN)
4 OFF Overheat (#HOT)
5 OFF Software Right Limit (#SRL)
6 OFF Software Left Limit (#SLL)
7 OFF Encoder Not Connected (#ENCNC)
8 OFF Encoder 2 Not Connected (#ENC2NC)
9 OFF Driver Alarm (#DRIVE)

10 OFF Encoder Error (#ENC)
11 OFF Encoder 2 Error (#ENC2)
12 OFF Position Error (#PE)
13 OFF Critical Position Error (#CPE)
14 OFF Velocity Limit (#VL)
15 OFF Acceleration Limit (#AL)
16 OFF Overcurrent (#CL)
17 OFF Servo Processor Alarm (#SP)
20 OFF HSSI Not Connected (#HSSINC)
25 OFF Program Error (#PROG)
26 OFF Memory Overuse (#MEM)
27 OFF Time Overuse (#TIME)
28 OFF Emergency Stop (#ES)
29 OFF Servo Interrupt (#INT)
30 OFF Integrity Violation (#INTGR)
31 OFF Component Failure (#FAILURE)

The number in the left column is the bit number, followed by an ON/OFF indicator and the fault
description and the bit name in parentheses. In the above example all the faults are OFF except for
the Left Limit fault of one or more axes.

The S_FAULT variable indicates that there is a motor fault, but does not specify which motor has
failed. To determine which motor has failed, query the FAULT variable, or use ?$ to query the state
of all motors.

Fault bits can be queried individually:

?S_FAULT.#LL
1
?FAULT(0).#LL, FAULT1.#LL
0
1

The controller answers a query of an individual bit by showing the numerical value of the bit: either
0 or 1.

207Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.3.3 Using the Fault Bits in if, while, till Commands

Using the fault variables in the condition of commands if, while, or till provides a decision making
mechanism that is based on the present state of the faults.

Examples:

if FAULT(0).#HOT OUT(0).6 = 1end
Activate an output (OUT.6) if X motor is
overheated

if FAULT(0).#LL | FAULT(0).#RL disp "X limit
switch"end

Display a warning if any limit switch of X
motor is active

till ^FAULT(0).#LL Wait until the X Left limit switch is released

if S_FAULT disp "Failure";end Display a warning if any fault is active

The condition IF S_FAULT is satisfied if S_FAULT is non-zero, i.e., if any bit of S_FAULT is raised. Any
fault, either system or motor, raises a bit in S_FAULT. Therefore a non-zero S_FAULT indicates that
one or more faults are active.

The variables FAULT and S_FAULT display the current state of the faults. A conditional command
based on these variables uses the fault state at the instant when the command is executed. For
example, if the X left limit was activated but then released, FAULT0.#LL is zero, and the command if
FAULT0.#LL considers the condition unsatisfied.

6.3.4 Creating Fault-Processing Autoroutines

To create an autoroutine that processes a fault, specify the fault bit in the autoroutine condition.

Example:

on FAULT(0).#LL Start the autoroutine when an 0 axis Left Limit fault occurs

A fault-processing autoroutine can reside in any program buffer. When the buffer is compiled, the
controller checks the autoroutine condition each controller cycle. When the condition is satisfied,
the controller interrupts the program that is currently executing in the buffer that the autoroutine
resides in, and starts the autoroutine execution.

A fault-processing autoroutine can supplement or replace the default response to a fault. If the
corresponding FDEF or S_FDEF bit enables the default response, the autoroutine starts and
executes in parallel with the default response. If the corresponding FDEF or S_FDEF bit is zero, the
default response is disabled, and the autoroutine is the only controller response.

The controller examines all autoroutine conditions each controller cycle. However, if an
autoroutine is executing in a buffer, and a condition of the second autoroutine in the
same buffer is satisfied, the second autoroutine will start only after termination of the
subroutine currently executing. Therefore, if an application includes a time-consuming
autoroutine, avoid placing safety autoroutines that require short response times in the
same buffer with the time-consuming autoroutine.

208Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Examples:

The following autoroutine displays a message when the Drive Alarm signal becomes active for the
0 axis motor:

on FAULT(0).#DRIVE
disp "Axis 0 Drive Alarm"
ret

In the following autoroutines, the 0 and 2 axes motors must be disabled simultaneously. Therefore,
if one of the drives fails, the second must be disabled as well. The default response disables the 0
axis motor if the 0 Drive Alarm occurs and disables the 2 axis motor if the 2 Drive Alarm occurs. The
following pair of autoroutines supplements the default response by disabling a motor if the other
motor fails:

on FAULT(0).#DRIVE disable 2; ret
on FAULT(2).#DRIVE disable 0; ret

When a 0 axis drive fault occurs, the following autoroutine terminates the controller activity for all
motors:

on FAULT(0).#DRIVE When 0 axis drive fault occurs
disableall Disable all motors
stopall Stop all other programs
stop Stop the current program

ret End of autoroutine

The S_FAULT variable contains the bits of the aggregated motor faults. These bits provide a
convenient alternative to the motor faults if an application requires common processing of a motor
fault irrespective of which motor caused the fault.

For example, the following autoroutine displays a message when the Left Limit switch of any motor
is activated:

on S_FAULT.#LL
disp "One of the Left Limit Switches is Activated"
ret

Autoroutine conditions can contain more than one fault bit, as is shown here in the first line of the
example:

on S_FAULT.#LL | S_FAULT.#RL
disp "Some Limit Switch Activated"
ret

The S_FAULT variable (used without a bit extension) indicates whether a fault has been detected
by the controller. The following example shows an autoroutine that provides an alarm message if
any fault occurs in the controller:

209Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

on S_FAULT
disp "Something happened"
ret

The controller activates an autoroutine when the condition of the autoroutine changes from false
to true. If the condition remains true, the autoroutine is not activated again until the condition
becomes false, and then true again. Therefore the above autoroutine displays the alarm message
only on the first fault. If one fault bit is already raised, and another fault occurs, the second fault
does not generate an alarm message.

The following autoroutine displays a fault message each time a fault occurs:

int LastFault
on LastFault <> S_FAULT
if (LastFault ~ S_FAULT) & S_FAULT

disp "Something happened"
end
LastFault = S_FAULT
ret

In the above example the local variable LastFault stores the current value of S_FAULT. The
exclusive OR (~) of LastFault and S_FAULT detects the bits of S_FAULT that changed. The AND (&)
with S_FAULT retains only the bits that changed from zero to one, and not from one to zero.

6.3.5 Disabling Fault Processing

Certain safety variables provide protection against potential serious bodily injury and
damage to equipment. Be aware of the implications before disabling any alarm, limit or
error.

The ACSPL+ variables define which faults are examined and processed. If a bit of FMASK or S_
FMASK is zero, the corresponding fault is disabled and the bit of FAULT or S_FAULT is not raised.

FMASK and S_FMASK are queried like any other variable, and the controller reports the status of
each meaningful bit.

Example:

?FMASK(0)
0 ON Right Limit (#RL)
1 ON Left Limit (#LL)
2 ON Network error (#NT)
4 ON Overheat (#HOT)
5 ON Software Right Limit (#SRL)
6 ON Software Left Limit (#SLL)
7 ON Encoder Not Connected (#ENCNC)
8 ON Encoder 2 Not Connected (#ENC2NC)
9 ON Driver Alarm (#DRIVE)

10 OFF Encoder Error (#ENC)

210Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

11 OFF Encoder 2 Error (#ENC2)
12 ON Position Error (#PE)
13 ON Critical Position Error (#CPE)
14 ON Velocity Limit (#VL)
15 ON Acceleration Limit (#AL)
16 OFF Overcurrent (#CL)
17 OFF Servo Processor Alarm (#SP)
20 OFF HSSI Not Connected (#HSSINC)

?S_FMASK
25 ON Program Error (#PROG)
26 OFF Memory Overuse (#MEM)
27 OFF Time Overuse (#TIME)
28 ON Emergency Stop (#ES)
29 OFF Servo Interrupt (#INT)
30 OFF Integrity Violation (#INTGR)

 31 OFF Component Failure (#FAILURE)

Normally, you enable or disable fault detection through the Adjuster wizard of the SPiiPlus MMI
Application Studio (see the SPiiPlus MMI Application Studio User Guide) when initially configuring
the controller. The configured values of FMASK and S_FMASK are then stored in the flash memory
and left unchanged during the application lifetime.

Changes to safety variables after initial controller configuration may affect your application. The
following section is relevant only if you need to enable or disable faults after initial configuration.

Example:

?FAULT(0).#DRIVE , SAFIN(0).#DRIVE Display the status of the 0 drive alarm
fault, and the safety signal

1 Drive Alarm fault bit is set.
1 Drive Alarm safety signal is set.
FMASK(0).#DRIVE = 0 Disable 0 axis Drive Alarm fault
?FAULT(0).#DRIVE , SAFIN(0).#DRIVE Display the status of the 0 axis Drive Alarm
fault, and the safety signal
0 Drive Alarm fault bit is reset.
1 Drive Alarm safety signal is still set.

6.3.6 Defining the Active Level of Safety Input

Safety inputs receive physical signals from various sources, such as limit switches and relays. Each
safety signal is sent in one of two forms (binary):

> High voltage level, no current in the controller input circuit.

> Low voltage level, outflowing current in the controller-input circuit.

By default, the high voltage level is defined as the active state of the signal, i.e., the state that
triggers a fault. This is called the normal polarity.

By using the ACSPL+ variables SAFINI and S_SAFINI, which define what level is active for each safety
input, you can change the default defining the low voltage level as active for a specific safety input.
The low voltage level will now trigger a fault. This is called inverse polarity. If a bit of SAFINI or S_
SAFINI is zero (default value), the corresponding input accepts the high level as active.

211Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

The bits of SAFIN and S_SAFIN reflect the physical states of the signals, while the bits of SAFINI and
S_SAFINI define the logical processing of the signals. SAFINI and S_SAFINI variables have no effect
on the physical signal, and the bits of variables SAFIN and S_SAFIN, which display the raw values of
the safety inputs are unaffected by the bits of SAFINI, S_SAFINI

The variables SAFINI and S_SAFINI are queried like any other variable. The controller reports the
status of each meaningful bit that corresponds to a safety signal.

Example:

?SAFINI(0)
0 ON Right Limit (#RL)
1 ON Left Limit (#LL)
4 OFF Overheat (#HOT)
9 OFF Driver Alarm (#DRIVE)

?S_SAFINI
28 OFF Emergency Stop (#ES)
31 OFF Component Failure (#FAILURE)

In the above example, the fact that the response to the SAFINI(0) query shows that RL and LL are
ON (bits 0 and 1) indicates that you have defined inverse polarity (low active level) for signals #RL,
#LL of the 0 axis.

Normally, you define the signal polarity through the Adjuster wizard of the SPiiPlus MMI Application
Studio (see the SPiiPlus MMI Application Studio User Guide) when initially configuring the controller.
The configured values of SAFINI and S_SAFINI are then stored in the flash memory and are not
changed during the application's lifetime.

Example:

?FAULT(0).#LL , SAFIN(0).#LL Display the status of Left Limit and the
Left Limit Safety signal for the 0 axis.

1 Left Limit fault bit is raised.
1 Limit safety signal is high.
SAFINI(0).#LL = 1 Set inverse polarity
?FAULT(0).#LL , SAFIN(0).#LL Display the status of Left Limit and the

Left Limit Safety signal for the 0 axis.
0 Left Limit fault bit changes to zero.
1 Left Limit safety signal remains high.

6.3.7 Fault Processing Modes

The controller defines two modes of behavior after a failure: regular and strict. Bit #FCLEAR of the
S_FLAGS variable selects the fault processing mode:

> If S_FLAGS.#FCLEAR = 0 (default) the controller is in regular mode

> If S_FLAGS.#FCLEAR = 1 the controller is in strict mode.

The difference between the modes manifests when a fault occurs that kills a motor:

> In the regular mode the next motion command simply clears the reason for the previous
kill for all involved motors and starts the new motion.

212Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> In the strict mode the next motion command cannot activate the motion and fails. The
motion cannot be activated as long as the reason for the previous kill is non-zero for any
involved motor.

The reason for a kill operation is stored in the MERR variable. In the strict mode as long as a MERR
element is non-zero, the corresponding motor cannot be put in motion. Commands ENABLE and
FCLEAR clear the MERR elements for the specified motors and enable the next motion.

The same rules apply to the results of a KILL command with non-zero second argument (the
reason for the kill - see KILL and KILLALL Commands). The reason is stored in the MERR element and
in the strict mode the next motion cannot be activated until the reason is cleared.

In the regular mode the behavior is simple and totally compatible with previous versions. However,
you may prefer the strict mode, especially during application development. The following example
gives a hint why the strict mode may be preferable:

Reciprocated:
PTP/r 0,10000
PTP/r 0,-10000
GOTO Reciprocated

Under normal conditions the motor continuously moves forward and backward by 10,000 units.
Assume, however, that the first motion brings the motor to the right limit switch. The first motion
terminates prematurely, because the motor is killed. However, the program continues running and
executes the second motion command. In the regular mode the second motion starts successfully
because it is directed out of the limit. Then the first motion command again brings the motor to the
limit. Therefore, in the regular mode the reciprocated motion continues and there is no clear
indication of abnormal condition.

Assume further, for the same application, that a broken connection to the right limit switch causes
the controller to mistakenly continuously detect that the right limit has been passed. The first
motion fails immediately after start, but the second one executes. The result is that the motors
move in a negative direction by steps of 10,000 units.

In the strict mode, the behavior is more predictable. After the first motion failed, the second one
cannot start and the program itself terminates with error. You can check the information in MERR
and PERR to disclose the reason for the failure.

If at any point of the application a fault is an expected condition and the program must continue,
the program in the strict mode must analyze the MERR element and execute the FCLEAR command
before activating the next motion.

6.4 Network Faults

There are three types of possible faults:

> Initialization failure – the EtherCAT stack could not start properly

> Network failure during the normal work – SP software keeps running

> SP software in a slave does not run properly or in reset state

6.4.1 AxisNetwork-Related Faults

Each axis has two network-related faults:

> FAULTX.2 - Network Fault

213Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> FAULTX.17 - Servo Processor Alarm

The possible reasons for Network Fault are:

> Reset of EtherCAT slave chip

> Physical Ethernet line disconnection

> Power Down of a single slave

The Servo Processor Alarm is set whenever the handshake counter between the master and the
slave is different from CTIME*20, i.e., the SP worked exactly CTIME*20 times between two
consequent MPU cycles.

The possible reasons for Servo Processor Alarm are:

> Communication loss with SP for any reason

> SP SW failure (Network might keep working OK)

> SP SW over usage

> Loss of synchronization between MPU and SP

> SP reset by Watch Dog or Power down

Both faults have a default response of disabling the axes that are affected. If there is a Network
Fault on an axis, it will be always followed by Servo Processor Alarm. Malfunction of a single node
will raise the Network Fault bit in all axes, in order to give the ability of immediate reaction.

6.4.2 Initialization Failure

The stack may fail to start up for several reasons. The ACSPL+ ECST variable shows different stages
of stack initialization. As long as the stack has not reached full network initialization followed by
successful load of an SP program, all axes of the corresponding SP will be in constant Servo
Processor Alarm.

In this case, ECST and ECERR will show the cause of the failure.

6.4.3 Network Failure During Operation

In the event of a loss of communication, for example, due to broken cable, power down, poor
contact, etc., after successful initialization, the Firmware will analyze which nodes are out of order
and will activate the Network Fault on related axes. If the SP program is valid and running (for
example in case of cable out), the SP recognizes that the master is not controlling the bus and
disables all its axes; in addition the handshake SYNC counter is frozen.

After successful reconnection, the SP sees that the master has sent a recent SYNC value and
returns to normal functioning. FCLEAR or ENABLE will reset the Network Fault and Servo Processor
Alarm and allow normal axis operation.

6.4.4 SP Software Failure

In case of node reset due to watchdog or power down or in case of an unpredictable SP
malfunction, the Servo Processor Alarm will always be activated on the related axes. In most cases
it will also cause Network Fault. There is no way to clear this fault, because the SP does not have a
valid program and it is not properly synchronized with the MPU.

214Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

To overcome this, run #HWRES (Reboot controller) in the SPiiPlus MMI Application Studio
Communication Terminal, or perform a complete power down, and then power up to reset this
node.

Other nodes may keep functioning, if their response to Network Fault is masked.

6.5 Detailed Description of Faults

This section provides a detailed description of each fault, including a description of the bits
involved, the default response, and examples of autoroutines.

6.5.1 Limit Switches: #LL, #RL

The exact usage of limit switches depends on the application. A specific axis may require only one
pair of limit switches or no limit switches at all. The following diagram illustrates a typical use of two
pairs of limit switches:

WORK AREALEFT HARD

= Hazardous Area

= Prohibited Area

RIGHT HARD

=Preliminary Limit Switch

=Limit Switch

Figure 6-1. The Use of Limit Switches

Fault bits FAULT.#LL, FAULT.#RL (in each element of FAULT)

Mask bits FMASK.#LL, FMASK.#RL (in each element of FMASK)

Based
upon
safety
signals

SAFIN.#LL, SAFIN.#RL (in each element of SAFIN)

Inversion
bits

SAFINI.#LL, SAFINI.#RL (in each element of SAFINI)

215Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Fault bits FAULT.#LL, FAULT.#RL (in each element of FAULT)

Internal
safety
condition

None

Default
response
bits

FDEF.#LL, FDEF.#RL (in each element of FDEF)

Default
response

The controller kills the violating motor.

As long as the fault is active, the controller kills any motion that tries to move
the motor in the direction of the limit. Motion to return to the allowed range of
motion is allowed.

Autoroutine examples:

The first example supplements the default processing of X limit faults with alarm messages:

ON FAULT(0).#LL When a Left Limit fault occurs in the 0 axis motor.

DISP "0 Left Limit switch activated" Display the message: 0 Left Limit switch activated.

RET

ON FAULT(0).#RL When a right limit fault occurs in 0 axis motor.

DISP "0 Right Limit switch activated" Display the message: 0 Right Limit switch activated.

RET

This second example implements an autoroutine that disables the motor rather than the default
response of killing the motion in case of a right limit or left limit fault. This response may be
superior to the default response if the motor is equipped with a brake that is activated by the
disable command because the brake may stop the motor faster than a kill command.

ON FAULT(2).#RL | FAULT
(2).#LL.

When there is a right limit or left limit fault in the 2 axis
motor.

DISABLE 2 Disable axis 2

RET

6.5.2 Network Fault: #NT

Fault bits FAULT.#NT

Mask bits FMASK.#NT

216Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Fault bits FAULT.#NT

Based upon safety signals None

Inversion bits

Internal safety condition

Default response bits None

Default response Disables the axis

6.5.3 Software Limit Switches: #SLL, #SRL

Fault bits FAULT.#SLL, FAULT.#SRL (in each element of FAULT)

Mask bits FMASK.#SLL, FMASK.#SRL (in each element of FMASK)

Based
upon
safety
signals

None

Inversion
bits

None

Internal
safety
condition

See explanation below.

Default
response
bits

FDEF.#SLL, FDEF.#SRL (in each element of FDEF)

Default
response

The controller kills the violating motor. As long as the fault is active, the
controller kills any motion that tries to move the motor in the direction of the
limit. Motion in the direction out of the limit is allowed.

Software limit switches use the following ACSPL+ variables:

> SLLIMIT – Software Left Limit (Lower limit of working area)

> SRLIMIT – Software Right Limit (Upper limit of working area)

The condition for software limit switches is based on the motor reference RPOS variable, not the
motor feedback FPOS variable. Therefore, the fault provides protection against errors in the
ACSPL+ application, not against hardware malfunctions.

The controller monitors the reference position RPOS and reference velocity RVEL and implements
the following verifications:

> If RPOS < SLLIMIT, the controller detects #SLL fault.

217Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> If RPOS > SRLIMIT, the controller detects #SRL fault.

> If RPOS is within the range and RVEL is non-zero, the controller calculates the distance
required to decelerate RVEL to zero using KDEC deceleration. If the final point of the
calculated deceleration process is < SLLIMIT, the controller detects #SLL fault. If the final
point of the calculated deceleration process is > SRLIMIT, the controller detects a #SRL
fault.

This logic provides the moving edge of the software limit fault, depending on the instant velocity.
As the controller kills the motor when the fault is detected, the termination point of the kill process
will be very close to the corresponding software limit point.

The termination point is not exactly the software limit point because the controller checks the
condition every controller cycle, i.e., at discrete time points. The termination point complies with
the following conditions:

> The termination point lies beyond the corresponding software limit.

> Overrun is not more than 2*Vel*Cycle,

where Vel is an instant velocity and Cycle is the controller cycle.

For example, if the FAULT(0).#SRL fault is detected, the requested velocity of 0 axis is 10,000
count/sec and the controller cycle is 1 msec. The controller will overrun the software right limit for
not more than 2*10000*0.001 = 20 counts.

Autoroutine examples:

The following autoroutines supplement the default processing of X software limit faults with an
alarm messages:

ON FAULT(0).#SLL
DISP "0 Software Left Limit violated"

RET

ON FAULT(0).#SRL
DISP "0 Software Right Limit violated"

RET

6.5.4 Non-Critical Position Error: #PE

Fault bits FAULT.#PE (in each element of FAULT)

Mask bits FMASK.#PE (in each element of FMASK)

Based upon safety signals None

Inversion bits None

Internal safety condition See explanation below.

Default response bits FDEF.#PE (in each element of FDEF)

218Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Fault bits FAULT.#PE (in each element of FAULT)

Default response None

Use the #PE fault to detect non-critical violation of position accuracy, and the #CPE (see Critical
Position Error: #CPE) fault to detect uncontrolled, excessive error that indicates loss of control.

The following ACSPL+ variables are associated with position errors:

> ERRI – Maximum position error while the motor is idle (not moving)

> ERRV – Maximum position error while the motor is moving with constant velocity

> ERRA – Maximum position error while the motor is accelerating or decelerating

> DELI – Delay on transition from ERRA to ERRI

> DELV – Delay on transition from ERRA to ERRV

The controller raises the FAULT.#PE bit if the position error exceeds the maximum specified value,
which is equal to ERRI, ERRV or ERRA depending on the motion state.

The variables DELI and DELV are used in a similar manner with the #CPE fault.

The following diagram illustrates the use of these variables for a typical motion profile that includes
acceleration, constant velocity and deceleration:

DELV DELI

PE > ERRI PE > ERRA PE > ERRV PE > ERRA PE > ERRI

V

t

Figure 6-2. Use of Variables in a Typical Motion Profile

The allowed position error limit is:

> ERRI if the motor is idle

> ERRV if the motor is moving with constant velocity

> ERRA if the motor is accelerating or decelerating

> DELV defines delay on transition from ERRA to ERRV.

> DELI defines delay on transition from ERRA to ERRI.

Autoroutine examples:

The following autoroutine supplements the default response to a position error with an alarm
message.

219Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

ON FAULT(1).#PE
DISP "Accuracy violation - the motion was killed"
RET

The next example corrects the motion conditions by reducing the velocity (VEL1) until the error
returns to within limits, instead of killing the motion.

ON FAULT(1).#PE When there is a position error fault in the 1 axis motor.
WHILE FAULT(1).#PE As long as there is a position error.
IMM VEL(1) = 0.9 * VEL(1) Reduce the velocity of the 1 axis motor by 10%.
WAIT 10 Delay.
END
RET

The controller automatically provides a smooth transition to the new velocity.

An application that incorporates the above autoroutine must satisfy the following conditions:

> All motions of the 1 axis are single-axis, or 1 is a leading axis in a group. If another axis is
leading, all motions will use the velocity of that axis, and the command VEL(1) = … will have
no effect.

> All motions of the 1 axis use the default velocity VEL(1) and do not specify individual
velocity.

> The specific error monitored is the position error only while the motor is moving with
constant velocity. To avoid the fault while the motor is idle or moves with acceleration, you
have to initialize the variables ERRI(1) and ERRA(1) to sufficiently large values.

The above autoroutine executes an undefined number of loops with delays in each
loop. Therefore, the execution time may be significant. As long as the autoroutine
executes, no other autoroutine in the same buffer can be activated. Do not place this
autoroutine in the same buffer that contains any time-critical autoroutine.

6.5.5 Critical Position Error: #CPE

Fault bits FAULT.#CPE (in each element of FAULT)

Mask bits FMASK.#CPE (in each element of FMASK)

Based upon safety signals None

Inversion bits None

Internal safety condition See explanation below.

Default response bits FDEF.#CPE (in each element of FDEF)

Default response The controller disables the violating motor.

220Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Use #PE fault (see Non-Critical Position Error: #PE) to detect non-critical violations of position
accuracy, and the #CPE fault to detect uncontrolled, excessive error that indicates loss of control.
#CPE should be greater than #PE.

The following ACSPL+ variables are associated with critical position error:

> CERRI - Critical position error if the motor is idle (not moving)

> CERRV - Critical position error if the motor is moving with constant velocity

> CERRA - Critical position error if the motor is accelerating or decelerating

> DELI - Delay on transition from CERRA to CERRI

> DELV - Delay on transition from CERRA to CERRV

The variables DELI and DELV are used also in the condition for the #PE fault.

The controller raises the fault bit if the position error exceeds the critical value. The critical value is
equal to CERRI, CERRV or CERRA depending on the motion stage. The following diagram illustrates
the use of these variables for a typical motion profile that includes acceleration, constant velocity
and deceleration:

DELV DELI

CPE > CERRI CPE > CERRA CPE > CERRV CPE > CERRA CPE > CERRI

V

t

The Critical limit for position error is:

> CERRI if the motor is idle

> CERRV if the motor is moving with constant velocity

> CERRA if the motor is accelerating or decelerating.

> DELV defines delay on transition from CERRA to CERRV.

> DELI defines delay on transition from CERRA to CERRI.

A #CPE fault implies a serious problem in motor control. Do not disable the default response unless
it is absolutely necessary in your application, i.e., keep FDEF.#CPE = 1.

Autoroutine examples

The following autoroutine supplements the default response with an alarm message:

ON FAULT(3).#CPE
DISP "Axis 3 shows abnormal error. The motor was disabled."

RET

221Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.5.6 Encoder Error: #ENC, #ENC2

Fault bits FAULT.#ENC, FAULT.#ENC2 (in each element of FAULT)

Mask bits FMASK.#ENC, FMASK.#ENC2 (in each element of FMASK)

Based
upon
safety
signals

None

Inversion
bits

None

Internal
safety
condition

The controller latches fault #ENC if the phase shift between the signals of the
primary encoder is lost, indicating a faulty encoder or noisy environment.

The controller latches fault #ENC2 if the phase shift between the signals of the
secondary encoder is lost, indicating a faulty encoder or noisy environment.

Default
response
bits

FDEF.#ENC, FDEF.#ENC2 (in each element of FDEF)

Default
response

The controller disables the violating motor. The faults remain active until the
user resolves the problems and enables the motor again or executes the
FCLEAR command.

Unlike most faults, #ENC and #ENC2 faults are latched. The fault bits remain raised even after the
cause of the fault has been eliminated. Only the next enable command resets the fault bits.

Occurrence of an #ENC fault indicates a serious problem in motor control. Do not disable the default
response unless it is absolutely necessary in your application, i.e., keep FDEF.#CPE = 1.

Autoroutine examples

The following autoroutine supplements the default response with an alarm message:

ON FAULT(2).#ENC
DISP "Encoder Error in 2 axis. The motor was disabled."

RET

6.5.7 Encoder Not Connected: #ENCNC, #ENC2NC

Fault bits FAULT.#ENCNC, FAULT.#ENC2NC (in each element of FAULT)

Mask bits FMASK.#ENCNC, FMASK.#ENC2NC (in each element of FMASK)

Based upon safety
signals

None

222Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Fault bits FAULT.#ENCNC, FAULT.#ENC2NC (in each element of FAULT)

Inversion bits None

Internal safety
condition

The controller raises fault bit #ENCNC if a primary encoder is not
connected.

The controller raises fault bit #ENC2NC if a secondary encoder is not
connected.

Default response bits FDEF.#ENCNC, FDEF.#ENC2NC (in each element of FDEF)

Default response The controller disables the violating motor.

If the controller detects a pair of differential encoder inputs that are not in opposite states (high
and low level), it raises the fault because this may indicate a problem such as a short circuit or
unconnected wire.

An #ENCNC fault indicates a serious problem in motor control. Do not disable the default response
unless it is absolutely necessary in your application, i.e., keep FDEF.#CPE = 1.

Autoroutine examples

The following autoroutine supplements the default response with an alarm message:

ON FAULT(0).#ENCNC
DISP "Axis 0: Encoder Not Connected. The motor was disabled."

RET

6.5.8 Drive Alarm: #DRIVE

Fault bits FAULT.#DRIVE (in each element of FAULT)

Mask bits FMASK.#DRIVE (in each element of FMASK)

Based
upon
safety
signals

SAFIN.#DRIVE (in each element of SAFIN)

Inversion
bits

SAFINI.#DRIVE (in each element of SAFINI)

Internal
safety
condition

The controller never sets the fault bit while the motor is disabled. The controller
starts monitoring the fault condition when the period of time defined by
variable ENTIME elapses after the motor has been enabled.

Default
response
bits

FDEF.#DRIVE (in each element of FDEF)

223Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Fault bits FAULT.#DRIVE (in each element of FAULT)

Default
response

The controller disables the violating motor.

The condition involves the following ACSPL+ variable:

ENTIME – Motor’s enable time in milliseconds

Even if the SAFIN.#DRIVE bit is in an active state, the controller never raises the fault bit while the
motor is disabled. When the enable command is issued, the controller waits for the period of time
defined by the ENTIME variable, and only then starts monitoring the SAFIN.#DRIVE bit. If the Drive
Alarm signal is still active at that time, the fault condition is satisfied.

The controller continues monitoring the fault condition until the motor is disabled by a disable
command or a fault that disables the motor.

Occurrence of a #DRIVE fault indicates a serious problem in the motor control. Do not disable the
default response unless it is absolutely necessary in your application, i.e., keep FDEF.#CPE = 1.

General autoroutine example:

The following autoroutine supplements the default response with an alarm message:

ON FAULT(2).#DRIVE
DISP "Axis 2 Drive Alarm. The motor was disabled"

RET

6.5.9 Motor Overheat: #HOT

Fault bits FAULT.#HOT (in each element of FAULT)

Mask bits FMASK.#HOT (in each element of FMASK)

Based upon safety signals SAFIN.#HOT (in each element of SAFIN)

Inversion bits SAFINI.#HOT (in each element of SAFINI)

Internal safety condition None

Default response bits FDEF.#HOT (in each element of FDEF)

Default response None

Autoroutine examples:

The first autoroutine activates the OUT(0).1 output, which could be wired to switch on an additional
motor ventilation fan. The second routine switches off the fan when the fault is no longer active:

ON FAULT(1).#HOT
OUT(0).1 = 1

RET

224Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

ON ^FAULT(1).#HOT
OUT(0).1 = 0

RET

6.5.10 Velocity Limit: #VL

Fault bits FAULT.#VL (in each element of FAULT)

Mask bits FMASK.#VL (in each element of FMASK)

Based upon safety signals None

Inversion bits None

Internal safety condition If ABS(RVEL) > XVEL, raise FAULT.#VL

Default response bits FDEF.#VL (in each element of FDEF)

Default response The controller kills the violating motor.

The condition involves the following ACSPL+ variable:

XVEL – Maximum allowed velocity for each motor

#VL uses the motor reference velocity RVEL, not the motor feedback velocity FVEL. Therefore, the
fault bit is raised if an application command calls for excessive velocity, even if the motor has not
reached this velocity. The fault can also be used for program testing without physical motion, while
motors are disabled.

Autoroutine example:

The autoroutine informs you about the violation.

ON FAULT(2).#VL
DISP "Axis 2 velocity limit was exceeded"

RET

6.5.11 Acceleration Limit: #AL

Fault bits FAULT.#AL (in each element of FAULT)

Mask bits FMASK.#AL (in each element of FMASK)

Based upon safety signals None

Inversion bits None

Internal safety condition If ABS(RACC) > XACC, raise FAULT.#AL

Default response bits FDEF.#AL (in each element of FDEF)

225Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Fault bits FAULT.#AL (in each element of FAULT)

Default response The controller kills the violating motor.

Acceleration limit uses the following ACSPL+ variable:

XACC – Maximum allowed acceleration for each motor

#AL uses the motor reference acceleration RACC, not the motor feedback acceleration FACC.
Therefore, the fault bit is raised if an application command calls for excessive acceleration, even if
the motor has not reached this acceleration. The fault also can be used for a program testing
without motion, while motors are disabled.

Autoroutine example:

The following autoroutine supplements the default response with an alarm message:

ON FAULT(0).#AL
DISP "Axis 0 Acceleration limit exceeded. The motor was disabled."

RET

6.5.12 Current Limit: #CL

Fault bits FAULT.#CL (in each element of FAULT)

Mask bits FMASK.#CL (in each element of FMASK)

Based upon safety signals None

Inversion bits None

Internal safety condition

If RMS current > XRMS, raise FAULT.#CL, or

If RMS current > XRMSD, raise FAULT.#CL, or

If RMS current > XRMSM, raise FAULT.#CL or

Default response bits FDEF.#CL (in each element of FDEF)

Default response The controller kills the violating motor.

The current limit fault is based on the Servo Processor algorithm that calculates the RMS value of
the motor current. When the calculated RMS current exceeds the allowed value the Servo
Processor reports an error that the MPU translates into a current limit fault.

Current limit processing uses the following ACSPL+ variables:

> XRMS – Maximum allowed RMS current for each drive

> XRMSD – Maximum allowed RMS current for each drive

> XRMSM – Maximum allowed RMS current for each motor

> XCURI – Maximum instantaneous current if the motor is idle (not moving)

> XCURV – Maximum instantaneous current if the motor is moving

226Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Use the SPiiPlus MMI Application Studio SAFETY AND FAULTS CONFIGURATOR to configure the
specified variables.

Autoroutine example:

The following autoroutine kills the motion (and displays an alarm message) instead of the motor.
(The default response can be disabled by adding FDEF.#CL = 0 to the ACSPL+ program.)

ON FAULT(1).#CL
KILL 1
DISP "Axis 1 RMS current limit exceeded. Motor halted."

RET

6.5.13 Servo Processor Alarm: #SP

Fault bits FAULT.#SP (in each element of FAULT)

Mask bits FMASK.#SP (in each element of FMASK)

Based upon safety
signals

None

Inversion bits None

Internal safety
condition

If the Servo Processor lost synchronization with MPU, raise
FAULT.#SP

Default response bits FDEF.#SP (in each element of FDEF)

Default response The controller kills the violating motor.

#SP indicates that communication between the MPU and one of the servo processors failed. The
occurrence of the #SP fault indicates a serious hardware problem.

Do not disable the default response unless it is absolutely necessary in your application, i.e., keep
FDEF.#SP = 1.

This fault may be caused by a problem in the SP program. If the SP program hangs, the fault
remains permanent. If the SP program time exceeds the tick time (50 µsec), the fault is
intermittent.

The disable reason reported by the controller is 5027 'Servo Processor Alarm'.

Autoroutine example:

The following autoroutine supplements the default response with an alarm message.

ON FAULT(1).#SP
DISP "Axis 1 Servo Processor Alarm"

RET

227Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.5.14 HSSI Not Connected: #HSSINC

Fault bits FAULT.#HSSINC (in each element of FAULT)

Mask bits FMASK.#HSSINC (in each element of FMASK)

Based upon safety signals None

Inversion bits None

Internal safety condition The controller raises fault bit #HSSINC if HSSI is not connected.

Default response bits FDEF.#HSSINC (in each element of FDEF)

Default response None

See also Using HSSI I/O Extension.

Autoroutine example:

The following autoroutine displays an alarm message.

ON FAULT(0).#HSSINC
DISP "Axis 0: HSSI not connected."

RET

6.5.15 Emergency Stop: #ES

Fault bits S_FAULT.#ES

Mask bits S_FMASK.#ES

Based upon safety signals S_SAFIN.#ES

Inversion bits S_SAFINI.#ES

Internal safety condition None

Default response bits S_FDEF.#ES

Default response The controller disables all motors.

Autoroutine example:

The following autoroutine kills all motions but does not disable the motors (this assumes that the
default response has been disabled by S_FDEF.#ES = 0).

ON S_FAULT.#ES
KILLALL

RET

228Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.5.16 Program Error: #PROG

Fault bits S_FAULT.#PROG

Mask bits S_FMASK.#PROG

Based upon safety
signals

None

Inversion bits None

Internal safety
condition

The controller latches the fault when any ACSPL+ program
encounters a run-time error.

Default response
bits

S_FDEF.#PROG

Default response The controller kills all executed motions.

Unlike most faults, the #PROG fault is latched. Once raised, the bit remains raised until the controller
resets it on execution of any command that compiles or starts a program in any buffer.

Autoroutine examples:

The following autoroutine supplements the controller's default response, terminating all
concurrent programs and displaying an alarm message.

ON S_FAULT.#PROG
STOPALL
DISP "Run-time error"

RET

A run time error in a buffer stops all activity in the buffer. Therefore, the above autoroutine cannot
intercept an error that occurred in the buffer where the autoroutine is located. However, it
intercepts an error in any other buffer.

This autoroutine can supplement the default response (S_FDEF.#PROG = 1) or can replace it (S_
FDEF.#PROG = 0).

The following autoroutine does the same (stops all programs) and also provides a diagnostic
message.

ON S_FAULT.#PROG
STOPALL
I0 = 0
LOOP IO

IF PERR(I0) >= 3020
DISP "Program ", I0, " failed. Error ", PERR(I0)
END

IO = 1O + 1

229Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

END
RET

The ACSPL+ PERR variable contains the termination codes of the ACSPL+ programs. Each element of
PERR contains a termination code for a different buffer. At power-up all elements of PERR are reset
to 0. When a program in any buffer finishes or terminates for any reason, the corresponding
element of PERR is assigned with a code that specifies the termination reason. The element resets
to zero again once the corresponding buffer is compiled or its program execution starts.

Termination codes from 3000 to 3020 indicate normal termination. Codes greater than or equal to
3020 indicate run-time errors (see SPiiPlus Command & Variable Reference Guide for a complete
breakdown of the termination codes).

6.5.17 Memory Overflow: #MEM

Fault bits S_FAULT.#MEM

Mask bits S_FMASK.#MEM

Based upon
safety signals

None

Inversion bits None

Internal safety
condition

The controller latches the fault bit when the user application requires
more memory than is available in the controller.

Default
response bits

S_FDEF.#MEM

Default
response

The controller kills all executed motions.

Unlike most faults, the #MEM fault is latched. Once raised, the bit remains raised until the controller
resets it on execution of any command that compiles or starts a program in any buffer.

Because the controller uses dynamic memory handling, the amount of the memory available for a
specific user application cannot be exactly determined. If an application raises this fault, you need
to reduce the size of the application or add memory.

The following recommendations may be useful in eliminating the error:

> Reduce the length of ACSPL+ programs.

> Reduce the volume of user local and global variables. Pay special attention to arrays.

> Limit the length of commands that are sent to the controller. Do not use commands that
exceed 2032 characters.

> Simplify the formulae used with the CONNECT and MASTER commands.

Autoroutine example:

230Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

The following autoroutine terminates all executing programs and displays an error message when
the fault occurs.

ON S_FAULT.#MEM
STOPALL
DISP "Memory overflow"

RET

This routine can supplement the default response (S_FDEF.#PROG = 1) or can replace it (S_
FDEF.#PROG = 0).

6.5.18 Time Overuse: #TIME

Fault bits S_FAULT.#TIME

Mask bits S_FMASK.#TIME

Based upon safety signals None

Inversion bits None

Internal safety condition The user application demands too much processing time.

Default response bits S_FDEF.#TIME

Default response The controller kills all executed motions.

The controller raises the fault bit when the user application consumes too much processing time
and S_FMASK.#TIME bit is raised.

The structure of the controller’s realtime cycle is discussed in Realtime and Background Tasks.

As the realtime processing time varies between cycles, the fault may occasionally occur and
requires no special attention. However, frequent or permanent occurrence of the fault requires
measures to correct the situation.

The controller has no default response to the fault. To monitor this fault, you must define your own
autoroutine.

The following recommendations may be useful in reducing real time processing time, thereby
eliminating the fault:

> Reduce the number of concurrently executed programs.

> Reduce the program execution rates (variables PRATE, ONRATE).

> Reduce the number of command specified in one program line.

> Reduce the number of autoroutines.

> Simplify the conditions in the autoroutines.

> Reduce the number of concurrently executed motions.

> Avoid short-time motions.

> Use segmented motion instead of a series of short PTP motions.

231Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> Simplify the formula used in the CONNECT and MASTER commands.

Autoroutine example:

The following autoroutine accumulates statistics on the fault. The routine measures a time of 1000
fault occurrences and then displays the average time between faults. The routine relies on zero
initialization of the local variables.

Local int N Declare local variable for
counting the number of faults.

Local real ATIME Declare local variable that will
show the time of 1000 faults.

on S_FAULT.#TIME Activate routine when the TIME
fault occurs.

N=N+1 Increment the number of faults
>IF N >=1000 If 1000 faults were accumulated…
DISP "#TIME occurs once per ", (TIME - ATIME) / N, " ms" Display average time between faults.
ATIME=TIME Prepare for the next accumulation
N=0 Zero to prepare for the next accumulation
END
RET

6.5.19 Servo Interrupt: #INT

Fault bits S_FAULT.#INT

Mask bits S_FMASK.#INT

Based upon safety
signals

None

Inversion bits None

Internal safety
condition

The controller raises the fault bit when the servo interrupt is not
generated or is irregular.

Default response
bits

S_FDEF.#INT

Default response The controller disables all motors.

The Servo Interrupt fault indicates a serious failure. Do not disable the default
response unless it is absolutely necessary in your application, i.e., keep FDEF.#INT = 1.

The MPU sets the fault if the 1ms interrupt is not received. The probable cause is a hardware
problem. The controller response to the fault is to disable all motors. The disable reason reported
by the controller is 5029 'Servo Interrupt'.

Autoroutine example:

The following autoroutine supplements the default response with termination of all ACSPL+
programs and an alarm message.

232Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

ON S_FAULT.#INT
STOPALL
DISP "Main interrupt is missing"

RET

6.5.20 Component Failure Faults: #FAILURE

Some components other than Drive, for example, power supply, I/O extension card or encoder
card, may have fault outputs that are common for all components. The controller provides system
faults that by default disable all axes if fault occurs.

The controller provides special functions that retrieve the card malfunctioned information
(according to address on the I2C bus) and the fault reason. This allows to user to write an ACSPL+
application that provides user-defined responses for different component faults. The components
that have such outputs provide a special jumper that connects or disconnects the fault output to
the controller.

6.5.20.1 Safety Variables

Currently only MC4U systems support these variables.

Component Failure fault is treated as any other system fault. There is a dedicated bit 31 (#FAILURE)
for this fault in S_FAULT, S_FMASK, S_SAFIN, S_SAFINI and S_FDEF.

S_FAULT.#FAILURE
(orS_FAULT.31)

Indicates if there is fault or not.

1 = An MC4U hardware component other than the drive, such as
the Power Supply, I/O card, or encoder card, has failed.

S_FMASK.#FAILURE
(or S_FMASK.31)

Defines if the Component Failure Fault will be examined by the
controller.

1 = Enables S_FAULT.#FAILURE.

S_FDEF.#FAILURE
(orS_FDEF.31)

You use this variable for triggering a response that you have
programmed.

1 = An MC4U hardware component other than the drive, such as
the Power Supply, I/O card, or encoder card, has failed.

S_SAFIN.#FAILURE
(or S_SAFIN.31)

Indicates the actual status of the Component Failure controller input -
see Examining System Fault Conditions.

S_SAFINI.#FAILURE
(or S_SAFINI.31)

Used for inverting the Component Failure input logic.

233Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.5.20.2 Component Failure Fault Handling in ACSPL+

The GETCONF(247,<AXIS>) function serves for retrieving the component malfunction information
(according to address on the I2C bus) and the fault reason. Using the 247 key triggers the function
to retrieve a 32-bit integer number containing the following information about the failed
component: Error Code, Card Address and Card Type. Below is the structure of the error data
number. In the event that more than one component failed, Bit 15 is set to “1”. The malfunctioning
device is automatically reset.

Figure 6-3. 32-bit Error Data Number

The following ACSPL+ example shows how to treat the return value of the GETCONF(247,<AXIS>)
function:

Local variables
INT res, error, i2c_addr, dev, nexterr
ON S_FAULT.#FAILURE
REP:

res = GETCONF(247, 0)
error = res & 0x7FFF
nexterr = res.15
i2c_addr.0 = res.16
i2c_addr.1 = res.17
i2c_addr.2 = res.18
dev.0 = res.24
dev.1 = res.25
dev.2 = res.26
dev.3 = res.27
dev.4 = res.28
dev.5 = res.29
dev.6 = res.30
dev.7 = res.31
DISP “ERROR =”,error
DISP “I2C ADDRESS =”,i2c_addr
DISP “DEVICE =”,dev
IF(nexterr)
GOTO REP

RET

6.6 Detailed Description of Safety Controls

This section explains the details of safety control implementation in the controller software. Read
this section if you want a deeper understanding of how the controller analyzes safety inputs,

234Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

examines safety conditions and processes faults.

The SAFIN and S_SAFIN variables are normally read-only. However, they can be written
to when working with the Simulator, to simulate safety inputs.

6.6.1 Examining Fault Conditions - Flow Chart

This is how the controller examines fault conditions:

Variable FAULT

OR

Axis Safety Inputs

Variable SAFIN Variable SAFINI

XOR

Internal Safety
Conditions

X axis

System Safety Inputs

Variable S_SAFIN Variable S_SAFINI

XOR

Variable S_FAULT

Internal Safety
Conditions

AND

Variable FMASK

AND

Variable S_FMASK

Figure 6-4. Fault Examination Flow Chart

The upper part of the diagram shows how motor faults are examined. The list of faults is identical
for each motor and the controller repeats the process for each motor. The end product is the
ACSPL+ FAULT variable.

The lower part of the diagram shows the elements that go into constructing the S_FAULT variable.
Part of its bits are set as the OR-aggregate of the FAULT elements, and other bits are determined
by examining the system faults.

235Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

6.6.2 Examining Motor Fault Conditions

The controller monitors motor fault conditions each controller cycle for each axis. There are two
sources of motor faults:

> Motor safety inputs

> Internal safety conditions

The controller samples motor safety inputs each controller cycle and stores the values in the SAFIN
variable. High voltage of a signal is stored as one in the corresponding bit of SAFIN. Low voltage is
stored as zero. Only the following bits of SAFIN are meaningful:

> #LL - Left Limit

> #RL - Right Limit

> #LL2 - Preliminary Left Limit

> #RL2 - Preliminary Right Limit

> #HOT - Overheat

> #DRIVE - Drive Fault

For example the command:

IF SAFIN(0).#DRIVE V0 = 1 ELSE V0 = -1
END

assigns a value of 1 to variable V0 if the Drive Alarm signal of the 0 axis motor is high and -1 if low.

The SAFINI configuration variable defines which level of motor safety input causes a fault. In the
above diagram XOR is a bit-wise operation. Therefore, if a bit of SAFINI is zero, high voltage of the
corresponding signal causes fault. If a bit of SAFINI is 1, low voltage causes fault. Only those bits of
SAFINI that correspond to the meaningful bits of SAFIN are used in fault processing. Other bits have
no effect.

In addition to the safety inputs, the controller examines a number of internal safety conditions for
each motor each controller cycle. The faults caused by the motor safety inputs and the faults
detected by internal conditions provide a set of motor faults.

A detected motor fault is stored in a bit of variable FAULT only if the corresponding bit of variable
FMASK is 1. If a bit of FMASK is zero, the controller does not raise the corresponding fault bit even if
the fault condition or safety input is true. If a bit of FMASK is set to 1, the corresponding bit of FAULT
is immediately set when the fault occurs. The bit rises to 1 or drops to zero in the same controller
cycle as the corresponding safety input or internal safety condition shows change in the fault state.

Only those bits of FAULT that correspond to the motor faults are meaningful.

When a bit is raised, it activates the default response to the fault. An Autoroutine that processes
the fault must use the bit of FAULT in as the condition.

6.6.3 Examining System Fault Conditions

System safety inputs and internal system safety conditions are monitored similarly to motor fault
conditions.

There are three sources of S_FAULT bits:

236Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

> Aggregated motor faults

> System safety inputs

> Internal system safety conditions

Aggregated motor faults are implemented as a combination of motor faults for all axes. For
example, if bit FAULT.#LL is one, bit S_FAULT.#LL also rises to one. Bit S_FAULT.#LL drops to zero
only if the #LL bits in all FAULTs for all motors are zero. Each meaningful bit of FAULT has its
counterpart in S_FAULT.

Emergency Stop is the only system safety input. The controller samples the input each controller
cycle and stores the value in the S_SAFIN variable. Therefore, only one bit, S_SAFIN.#ES, is
meaningful. High voltage of the signal is stored as one in the bit, low voltage is stored as zero. An
application uses S_SAFIN if a raw immediate value of Emergency Stop input is required.

The configuration variable S_SAFINI defines which level of Emergency Stop input causes a fault. In
Examining Fault Conditions - Flow Chart the XOR is a bit-wise operation. Therefore, if bit S_
SAFINI.#ES is zero, high voltage of Emergency Stop causes a fault. If bit S_SAFINI.#ES is one, low
voltage causes fault. Only one bit of S_SAFINI is used in fault processing. Other bits have no effect.

Each controller cycle the controller examines a number of internal system safety conditions. The
aggregated motor faults, the Emergency Stop fault and the faults detected by internal conditions
provide a set of system faults.

A system fault is stored in a bit of variable S_FAULT only if the corresponding bit of variable S_
FMASK is one. If a bit of S_FMASK is zero, the controller does not raises the corresponding S_FAULT
bit even if the fault is detected. If a bit of S_FMASK is one, the corresponding bit of S_FAULT follows
the current state of the fault. The bit rises to one or drops to zero in the same controller cycle as
the corresponding fault changes its state.

Only those bits of S_FAULT that correspond to the aggregated motor faults and to the system
faults are meaningful.

When a bit of S_FAULT is raised, it activates the default response to the fault. An autoroutine that
processes the fault must use the bit of S_FAULT as the condition.

6.7 Extended Fault Configuration

The controller's default safety configuration and responses fit the needs of most
applications.

Only an experienced user should make modifications to the safety configuration.
Improper configuration may result in unsafe operation, may damage the equipment,
and may constitute a hazard to personnel.

As mentioned earlier in this chapter, the controller response to a fault can be modified with the
ACSPL+ FDEF/S_FDEF variables and with autoroutines.

The #SC terminal command reports the current safety system configuration (see Report Safety
Configuration).

There are several other options for safety system configuration:

237Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

Safety groups

Two or more axes can be combined in a safety group. All axes belonging to the safety
group respond to any fault synchronously. If a fault affects one axis in the group, it
immediately affects all the other axes in the group (refer to the SAFETYGROUP command
in the SPiiPlus Command & Variable Reference Guide).

Kill -disable response

In response to a fault, the controller executes KILL, decelerates the motor to zero velocity,
and then disables the motor.

Changing response without an autoroutine

An axis can respond to a fault in one of the following basic ways:

No response

Kill response

Disable response

Kill-disable response

For each type of fault, the controller defines a default response, which can be overridden
with an autoroutine. The SAFETYCONF command (refer to the SAFETYCONF command in
the SPiiPlus Command & Variable Reference Guide) switches an axis between the four
basic fault responses. An autoroutine is only required if the desired response is not one of
the these.

Fault generalization

The fault response for a specific fault and a specific axis can be generalized to affect all the
axes. For example, by default the 0 Drive Alarm fault disables the 0 axis motor, but has no
affect on the 1 axis motor or any other motor. However, if you generalize the Drive Alarm
fault for axis 1, the 1 axis motor will be affected by a Drive Alarm fault on any axis.

Specific motor configuration

The default configuration for all axes is identical. For example, the default response to a
Limit Switch fault is to kill motion. However, the response can be modified individually for
each motor. For example, if a Limit Switch fault occurs, the 0 axis motor can be killed while
the 1 axis motor is disabled.

238Version 3.02

ACSPL+ Programmer's Guide
6. Fault Handling

7. Connection to the Plant
This chapter details the connection between the motion controller and the controlled plant.

7.1 General Diagram

All connections between the controller and the controlled plant are provided through the SP
processors as shown:

Figure 7-1. SPiiPlus-Plant Connections and Related Parameters

The ACSPL+ variables that provide access from your application to the control object are shown to
the left. The following variables are available:

> RPOS – Reference Position, array of eight elements, contains the desired motor position
calculated by the controller.

> FPOS – Feedback Position, array of eight elements, reads the current motor position.

> IND – Index Position, array of eight elements, reads the position of the last encountered
encoder index.

> MARK – Mark Position, array of eight elements, reads the position of the last encountered
Mark signal.

> M2ARK – Secondary Mark Position, array of eight elements, reads the position of the last
encountered Mark2 signal.

> FAULT – Faults, array of eight elements, the bits of the variable report the axis-related
faults detected by the safety control

239Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

> S_FAULT – System Faults, scalar, the bits of the variable report the system faults detected
by the safety control.

> IN – General Purpose Inputs, array of eight elements, each bit reports the state of one
general-purpose input.

> OUT – General Purpose Outputs, array of eight elements, each bit defines the state of one
general-purpose output.

> AIN – Analog Inputs, array of 16 elements, each element reads the numerical value of the
voltage supplied to one analog input. The number of analog inputs varies depending on
the controller model.

> AOUT – Analog Outputs, array of 16 elements, each element defines the voltage
generated by one analog output. The number of analog inputs varies depending on the
controller model.

> EXTIN – Extended Inputs, array of eight elements, each bit represents a bit in the input or
HSSI register.

> EXTOUT – Extended Outputs, array of eight elements, each bit represents a bit in the HSSI
register

7.2 User-Defined Units

The controller allows you to define the units used for motion programming and monitoring. This is
done by setting the value of the EFAC variable.

During the configuration stage, you can set the value of the EFAC variable to specify the ratio
between the desired unit and an encoder count for each axis. For example, if the encoder
resolution is 1000 counts per millimeter, and you desire to program in millimeters, the
corresponding EFAC element must be set to 0.001.

The user-defined units apply to all motion commands, so that all position-related arguments must
be specified in user-defined units. The user-defined units also affect all position-related standard
variables. For example, if the user-defined units are millimeters, then the unit of RPOS, FPOS, APOS,
MPOS, IND, MARK, etc., will be in millimeters.

The user unit also affects velocity, acceleration and jerk variables. For example, if the EFAC value
defines the unit as millimeter, then the units of VEL, RVEL, FVEL, XVEL, etc., will all be millimeters per
second. The unit of the variables ACC, DEC, KDEC, RACC, FACC, etc., will be millimeters per second as
well as the unit of the variables JERK, GJERK.

You can define the same or different units for each axis, irrespective of the encoder resolution.

Example (rotary motor):

EFAC(0) = 360 / (2000x4)

Where:

Feedback resolution 2000 lines/rotation

Internal Multiplier x4

User units 360 degrees per rotation

240Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

EFAC value 0.045 (i.e., 360/(2000*4))

EFAC(0) = 1 / (500*4)

Where:

Feedback resolution 2 micron (500 lines/mm)

Internal Multiplier x4

User units mm

EFAC value 0.005 (i.e., 1/(500*4))

Example (linear motor, sin-cos encoder)

EFAC(0) = 1 /(500*64)

Where:

Feedback resolution 500 lines/mm

Internal Multiplier x64

User units mm

EFAC value 0.00003125 (i.e., 1/(500*64))

Example (rotary motor connected to ball screw)

EFAC(0) = 1 / (2000*4*(1/0.5))

Where:

Feedback resolution 2000 lines/ rotation

Gear ratio 1 motor rotation=0.5mm motion of load

Internal Multiplier x4

User units mm

EFAC value 0.000625 (i.e., 1/(2000*4*(1/0.5)))

7.3 Direct and Feedback Transform

The SPiiPlus controller accepts the encoder signals and calculates the feedback position in encoder
counts. All servo algorithms in the SPiiPlus controller are based on encoder counts, not user units.
Therefore, when reading the feedback position from the SP, the controller executes feedback
transforms according to the formula:

FPOS = FP*EFAC + EOFFS

241Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

where FPOS is the controller feedback position in user units, FP is an SP-calculated feedback
position in encoder counts, EFAC is a user-defined value of the corresponding EFAC factor, and
EOFFS represents an offset.

EOFFS is a read-only standard variable that provides the offset between the SP-calculated position
and the controller feedback position. The value of EOFFS changes when the set command defines a
new origin for an axis.

When writing the reference position to the SP, the controller executes a direct transform given by
the formula:

RP = (RPOS – EOFFS) / EFAC

where RPOS is the controller reference position in user units, and RP is the SP reference position in
encoder units.

7.4 Index and Mark Values

Index and Mark processing is based on the SP hardware latch of the encoder reading when the
index or mark input signal occurs. The latched position is accurate to within one encoder count at
speeds of up to 5 million counts per second.

The following input signals are used for position latching:

> Encoder Index – One index signal is available per axis.

> MARK and MARK2 – These signals are available only for axes 0, 1, 2, and 3.

Each of the three signals has an independent circuit and a separate latch register. The circuit latches
the encoder reading in the register on the positive edge of the corresponding signal.

The controller further processes the latched signal. In this example we will use the index to explain
the process. Processing the mark values is similar.

When the index signal latches the encoder reading, the controller raises a flag (the bit IST.#IND),
converts the value into user units (scale and offset), and stores the value in the IND variable.
Afterwards, as long as the IST.#IND bit is set, the controller ignores any new index occurrences.
Therefore, the IND variable does not change even if a new index was encountered. To reactivate
the index latching, you must explicitly reset the IST.#IND bit.

242Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

The above is only accurate for Digital encoders.In the case of SIN-COS encoders, FPOS(0)
is an interpolated value that contains a position in between zero-crossing of the SIN-
COS signals.
Interpolation is done in the software and the hardware has the ability of latching only
the zero crossings of the sine-cosine.So when you reset IST(0).#IND on the rising edge
of the pulse, it latches the current value of the zero-crossing counter.
This is a low resolution counter that counts the quadrants of the SIN-COS. If the rising
edge is detected a little bit before the zero crossing, the counter still has the previous
zero-crossing position as shown in the following diagram:

The latching is done on the “Quad” signal that has a coarse resolution.So IND holds the
zero-crossing position of SIN-COS only.

The following program fragment reports the index value each time that the index is encountered:

IST0.#IND = 0 Reset any index encountered previously
INDREP Start of the loop
TILL IST0.#IND Wait until the index is latched
DISP IND0 Report the index position
IST0.#IND = 0 Reactivate index latching
GOTO INDREP Go to the start of the loop

Maximum index/mark detection frequencies by an ACSPL+ program for different
Controller Cycle Time (CTIME) values:

> 1 msec: 50Hz

> 0.5 msec: 100Hz

> 0.2 msec: 250Hz

7.5 Safety Inputs

The following safety inputs are available for each axis:

> LEFT LIMIT – Signal from Left Limit switch.

> RIGHT LIMIT – Signal from Right Limit switch.

> DRIVE ALARM – Alarm signal from the drive; normally is on when the drive is disabled, and
is off when the drive is enabled.

243Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

> NETWORK – Loss of network connectivity has been detected.

> OVERHEAT – Signal from a temperature sensor (not supported in all controller models).

The following safety input is not related to a particular axis and indicates a general failure of the
control object:

> EMERGENCY STOP – General failure of the control object.

The controller processes each safety input and raises the corresponding fault bit in the FAULT or S_
FAULT variable accordingly. The following bitmapped variables are involved in the processing of the
safety inputs:

> SAFIN and S_SAFIN, read-only variables (except when used with Simulator) – Indicate the
raw state of safety inputs before any processing.

> SAFINI and S_SAFINI, configuration variables – Define the active state of each signal,
specifying inversion of a signal if required.

> FMASK and S_FMASK, configuration variables – Enable or disable using each signal in the
safety control.

> FAULT and S_FAULT, read-only variables – Indicate the faults detected by the safety
control.

> FDEF and S_FDEF, configuration variables – Enable or disable the controller default
response when the fault occurs.

7.6 Digital Inputs/Outputs Repetitive

A digital input accepts a binary signal from an external source, such as a switch or a relay. A digital
output provides a binary signal to an external acceptor such as an LED or actuator. Unlike the safety
inputs, a digital input or digital output has no predefined function in the controller. You can connect
signals to inputs or outputs and process them as required by the application.

The inputs are represented by the integer array: IN. The outputs are represented by the integer
array: OUT. Each digital input or output is treated as one binary bit. The low voltage level
corresponds to zero and high voltage level corresponds to one. Each element of the IN and OUT
arrays is a 32-bit integer number that can represent up to 32 inputs or outputs. In all current SPiiPlus
models, the number of inputs and outputs is less than 32; therefore all actual inputs and outputs
are represented in IN0 and OUT0. All other elements of IN and OUT are reserved for future
extension. For the exact number of inputs/outputs see the specifications of the controller model.

The following example shows an autoroutine that changes the state of output 5 once the state of
input 3 changes from 0 to 1.

ON IN0.3 Activate autoroutine on positive edge of input 3.
OUT0.5 = ^OUT0.5 Invert the state of output 5.
RET End of the autoroutine

7.7 Analog Inputs/Outputs

An analog input accepts analog signal from an external source, such as a sensor or a potentiometer.
An analog output provides analog signal to an external receiver, such as an actuator or a measuring

244Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

device. Analog inputs and outputs have no predefined function in the controller. You can connect
signals to inputs and outputs and process them as required by the application.

The analog inputs are represented by the integer array: AIN and the analog outputs are
represented by the integer array: AOUT. Each analog input/output is represented by one array
element. The range of the AIN and AOUT arrays depends on the type of the input or output and
the bit resolution of the ADC or DAC.

Example: for ±10V analog outputs, the AOUT range is from -100 (for -10V) to +100 (for +10V).

Example: for ±10V analog inputs ,the AIN range is from-100 (for -10V) to+100 (for +10V) .

If an analog output is connected to a drive, it has a dedicated destination and cannot be used as a
general-purpose analog output.

For model-dependent analog I/O information (for example, the number and range of inputs and
outputs) see the controller's Hardware Guide.

The following example represents an autoroutine in the UDI that displays a message when the
voltage in the 1st analog input rises above +7.5V.

ON AIN1 > 75 !Activate autoroutine once the value of AIN1 exceeds 75(+7.5V)
DISP “AIN1 > 7.5V" !Display a message
RET !End of the autoroutine

7.8 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (HSSI) provides a simple interface for various external
devices.

The HSSI provides up to 256 input bits and up to 256 output bits. Not every controller model
supports all 512 bits. For the exact number of inputs and outputs supported, see the controller
model’s Hardware Guide.

The HSSI bits are represented by an integer array: EXTIN or EXTOUT. Each HSSI bit corresponds to
one bit in one element of the EXTIN and EXTOUT array.

The HSSI bits have no predefined function in the controller. You are free to use HSSI as required in
the application. In the simplest case, the HSSI bits can be used for an extension of the digital
inputs/outputs. In a more sophisticated application, any sensor or actuator including encoders and
drives can be connected through the HSSI.

The HSSI interface is described in detail in the HSSI Expansion Modules Guide.

245Version 3.02

ACSPL+ Programmer's Guide
7. Connection to the Plant

8. Advanced Features
This chapter describes various advanced ACSPL+ programming features that are available to you.
Topics covered are:

> Data Collection

> PEG Overview

> Sin-Cos Encoder Multiplier Configuration

> Interrupts

> Dynamic Braking

> Constant Current Mode

> Hall Sensor Commutation

> Communicating with the SPiiPlus C Library

> Communicating with Non-ACS Devices

> TRIGGER Command

> Dynamic TCP/IP Addressing

> Non-Default Connections

> Input Shaping

> DRA Algorithm

> BI-Quad Filter

8.1 Data Collection

Data collection is useful in the following applications:

> Troubleshooting

> Adjusting servo control loops

> Applications that require detailed information about internal controller processes

> Teach-and-Go applications

8.1.1 DC Command

Description

The DC command is used for executing data collection.

Syntax

DC [/switch] [axis], array_name, #_of_samples, period, list_of_variables

STOPDC [/switch] [integer]

Where switch can be one or a combination of:

s Start data collection synchronously to a motion.

246Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

w
Create the synchronous data collection, but do not start until a GO command is issued.
W can only be used with the S switch.

t
Temporal data collection: sampling period is calculated automatically according to
collection time.

c Start cyclic data collection (can be used with switches S and W).

> Data collection started by the DC command without the S switch is called system data
collection.

> Data collection started by the DC/S command is called axis data collection.

> Data collection started by the DC/C command is called cyclic data collection.

Unlike the standard data collection that finishes when the collection array is full, cyclic data
collection does not self-terminate. Cyclic data collection uses the collection array as a cyclic buffer
and can continue to collect data indefinitely. When the array is full, each new sample overwrites the
oldest sample in the array. Cyclic data collection can only be terminated by the STOPDC Command.

Arguments

axis
Axis to which the data collection must be synchronized. The parameter is
required only for axis data collection (S switch).

array_
name

Array that stores collected data. The array must be previously defined as global,
integer or real. The array size must be compatible with the number of samples
and number of stored variables (see Understanding System Data Collection).

#_of_
samples

The number of data samples to collect.

period

Sampling period in milliseconds. Actual sampling period may differ from this
value, because the controller rounds it to an integer number of controller
periods. For example if you set the period to 3.3 milliseconds, the controller will
round it to 3 milliseconds. If switch T is included in the command, the parameter
defines a minimal period (see explanation of temporal data collection below).

list of
variables

Up to eight variable names, whose values are to be collected. Each variable can
be a scalar variable, or an element of an array. Both local and global variables can
be specified. Irrespective of the storage array type, any combination of integer
and real variables is allowed - the controller automatically executes type
conversion if required.

8.1.2 SPDC - High-Speed Data Collection

Description

The SPDC command starts data collection from an Servo Processor variable for a given Servo
Processor.

Syntax

SPDC [/r] Array, number_of_samples, sampling_period, SP_number, SP_Address1, [SP_Address2]

247Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Arguments

Array

Array name, up to XARRSIZE variable value.

By default, ARRAY is assumed to be an integer array, if the /R switch is added,
it defines the array as real.

number_of_
samples

The number of samples to collect, the maximum value depends on the size of
the array.

sampling_
period

The time, in millisecords, that each sample is taken.

SP_number The number of the Servo Processor to be sampled

SP_
Address1

The address of the Servo Processor variable in the Servo Processor to sample,

SP_
Address2

As an option, you can add another address of an other Servo Processor
variable in the Servo Processor to sample,

The minimum sampling period is 0.05 millisecond, which defines a sampling frequency of 20kHz.

The maximum sampling period is limited by CTIME value. By default, CTIME is 1 millisecond, which
restricts sampling period to 1 millisecond maximum.

The controller rounds the specified period to an integer number of minimal periods and restricts it
to the permitted range.

8.1.3 ACSPL+ Variables Involved inData Collection

Data collection uses the following ACSPL+ variables:

AST
Axis State – Bit #DC in this bit-mapped variable is ON while an axis (started with /S)
data collection for the corresponding axis is in progress. The bit is OFF if no axis
collection for the axis is executed.

DCN

DC Number of Samples (axis variable) – While an axis data collection is in progress the
variable displays the index of the array element that stores the next sample. When
an axis data collection for the corresponding axis terminates, the variable stores the
number of actually collected samples. If the data collection terminates automatically,
the variable is always equal to the requested number of samples specified in the DC
command. If the data collection terminates due to the STOPDC command, the
variable may be less than the requested number of samples.

DCP

DC Period (axis variable) – When an axis data collection for the corresponding axis
terminates, the variable stores the sampling period. Unless a temporal data collection
was executed, the variable is always equal to the requested period specified in the
DC command. For temporal data collection (/T) the variable may be greater than the
requested minimal period.

248Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

S_
DCN

General DC Number of Samples – While a system data collection is in progress the
variable displays the index of the array element that stores the next sample. When a
system data collection terminates, the variable stores the number of actually
collected samples. If the data collection terminates automatically, the variable is
always equal to the requested number of samples specified in the dc command. If
the data collection terminates due to the STOPDC command, the variable may be less
than the requested number of samples. For cyclic data collection S_DCN displays the
current number of collected samples and changes as follows:

1. At the start of data collection S_DCN is assigned with zero

2. Each sampling tick S_DCN is incremented until it reaches the size of the
sample array

3. S_DCN then remains unchanged (the new sample overwrites the oldest and
the total number of samples remains the same)

As long as the cyclic data collection is in progress, the application cannot use the
sample array. After the cyclic data collection finishes, the controller repacks the
sample array so that the first element represents the oldest sample and the last
element represents the most recent sample.

S_
DCP

System DC Period – When a system data collection terminates, the variable stores the
sampling period. Unless a temporal data collection was executed, the variable is
always equal (see explanation of the PERIOD parameter above) to the requested
period specified in the dc command, unless it was rounded to the controller cycle. For
temporal data collection (/T) the variable may be greater than the requested minimal
period.

S_
ST

System State – Bit: #DC in this bit-mapped variable is ON while a general (started
without /S) data collection, either standard or cyclical, is in progress. The bit is OFF if
no general collection is executed.

8.1.4 Understanding System Data Collection

Data collection is disabled when the SPiiPlus MMI Application Studio SCOPE is operating.

When the controller executes the DC command, it starts a separate real-time data collection
process that progresses in parallel with ACSPL+ programs and motion execution. Each sampling
period the process latches the values of all specified variables and stores them in the specified
array. The process continues until the specified number of samples is stored, or the command
STOPDC is executed. After process termination the array contains a time series of the specified
variables that may then be used for data analysis.

This is shown in the following example:

global real DCA(2)(1000)
DC DCA, 990, 3, FPOS(0), FPOS(1)

249Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

> In the first line, a matrix consisting of two lines and 1,000 columns is set up for data
collection

> The second line starts the data collection of the Feedback Position values for axes 0 and 1.
990 samples are to be collected, with a period of three milliseconds. The first step of the
data collection stores the current value of FPOS0 in DCA(0)(0) and FPOS1 in DCA(1)(0). The
second step stores FPOS0 in DCA(0)(1) and FPOS0 in DCA(1)(1).

Each variable is stored in one line of the array. Therefore the first dimension of the array (the
number of lines) must be equal or greater than the number of variables. If the number of lines is
greater than the number of variables, the extra array lines remain unaffected by the data
collection. If only one variable is specified for data collection, a one-dimensional array is allowed.

Each sample of data collection fills up one column of the array. Therefore the second dimension of
the array (number of columns) must be equal or greater than the requested number of samples. If
the number of columns is greater than the number of samples, the extra array columns remain
unaffected by the data collection. The following examples show incorrect usages of the DC
command.

The following DC command is not allowed because the number of variables exceeds the number of
array lines:

global int IA, IC(1000)
DC IC,1000, 1, IA, FPOS(0)

The following DC command is not allowed, because the number of required samples exceeds the
number of array columns:

global int IA, IC(1000)
DC IC,1001, 1, IA

If /S is not specified, the system data collection process starts immediately after executing the dc
command. Normally, data collection stops automatically after <number of samples> x <period>
milliseconds. If the STOPDC command executes while the data collection is in progress, the data
collection stops prematurely, and the remaining array columns remain unaffected. To terminate
system data collection, the STOPDC command must contain no parameters.

The variable S_DCN provides the number of samples stored during data collection.

The following are examples of DC commands:

global
int IA, IC
(1000)

Set up a one-dimensional 1000-line array for collecting data about a user-
defined integer variable.

250Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

global
real RA
(2)
(2000)

Set up a two dimensional array with two columns and 2000 lines for collecting
data about a real user-defined variable.

DC IC,
1000, 1,
AOUT(0)

Collect 1000 samples of AOUT on the 0 axis at a rate of one per millisecond.

DC RA,
2000,
2.5, IA,
FPOS(7)

Collect 2000 samples of FPOS on axis D, at a rate of 3 per millisecond (it should be
noted that the command calls for 2.5 milliseconds, but the controller rounds it up
to the nearest whole number).

DC RA,
500, 1,
TIME

Collect 500 samples of the ACSPL+ variable TIME at a rate of one per millisecond

8.1.5 Axis Data Collection

When switch S is included in the DC command, data collection starts synchronously with a motion.
The first parameter must specify an axis with which the data collection is synchronized.

If the axis is idle at the moment when the DC/S command executes, no synchronization is provided
and the data collection starts immediately just as if the DC command was executed without the
switch. If the axis or axis group is in motion when the DC command executes, the data collection
lines up in the motion queue and waits for all motions that were planned before it, to finish. When
the motion queue comes to the data collection, the data collection starts, and immediately the next
motion in the motion queue starts. Data collection therefore introduces no delay in the motion
queue and does not affect motion execution.

Having started, data collection continues in parallel to the executed motion. Data collection finishes
when the specified number of samples is stored, or the STOPDC command executes.

Data collection initiated by the DC command with no associated parameters is stopped by the
STOPDC command with no associated parameters. To stop synchronous data collection initiated by
the DC/S command, the STOPDC command must also include the S switch and the axis specification.

The DC/S command synchronizes the data collection start to the motion of an axis, but is not limited
to collecting data only of that axis. Any parameter for any other axis may be specified for data
collection. For example, the command

global real Array(2)(5)
dc/s 0,Array,500,1,FPOS(0),FPOS(1)

synchronizes data collection to the start of motion of axis 0, but collects data on both axes 0 and 1.

Only one data collection process, started by the DC command, can execute at a time. The next DC
command can execute only after the data collection started by the previous DC command finishes.
However, data collection, initiated by the DC/S command, may progress in parallel with the data
collection initiated by the DC command. Moreover, several data collection processes initiated by the

251Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

DC/S command may progress in parallel, providing they refer to different axes or axis groups. For
example these two commands are executed serially:

DC/s 0, Array,500,1,FPOS(0)
DC/s 0, Array,500,1,FPOS(1)

While these commands are executed in parallel (unless the 0 and 1 axes belong to the same axis
group):

DC/s 0,Array,500,1,FPOS(0)
DC/s 1,Array,500,1,FPOS(1)

The following is a full example of using the DC/S command:

GLOBAL REAL DC_DataX(2)(15000)
GLOBAL REAL DC_DataY(2)(15000)
GLOBAL REAL DC_DataA(2)(15000)
GLOBAL REAL DC_DataAsync(3)(10000)
ENABLE 0; ENABLE 1; ENABLE 2
!MASTER MPOS(1) = RPOS(0)+200
!SLAVE/p 1
DISP "DCN = %D, %D, %D", DCN(0), DCN(1), DCN(2)
!DC/s X, DC_DataX, 15000, 1, APOS(0), RPOS(0) ! commented
DC/s Y, DC_DataY, 15000, 1, APOS(1), RPOS(1)
DC/s A, DC_DataA, 15000, 1, APOS(4), RPOS(4)
!DC DC_DataAsync,
DISP "DCN = %D, %D, %D", DCN(0), DCN(1), DCN(2)
wait 1000000
PTP/re X, 10
DC/s X, DC_DataX, 15000, 1, APOS(0), RPOS(0) ! added
STOPDC

8.1.6 STOPDC Command

Description

The STOPDC command is also applicable to cyclic data collection.

An additional integer argument can be specified in the STOPDC command; STOPDC without
arguments terminates the data collection immediately. STOPDC with an argument creates delayed
termination of the data collection. For example:

STOPDC 50 Collect additional 50 samples and then finish.

It should be noted that the syntax of STOPDC that terminates synchronous data collection has been
changed. If your application uses synchronous data collection, slight changes may be required. To
terminate a synchronous data collection that was commanded by a DC/S command, the STOPDC
command must also have switch S. For example:

252Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

DC/s
0,ARR,50,10,VAR1

Start synchronous data collection by axis 0 to a global real array ARR of
size 50, sampling period 50, collect global variable VAR1.

STOPDC/s 0 Terminate synchronous data collection by axis 0.

8.2 PEG Overview

The purpose of the Position Event Generator (PEG) mechanism is to generate accurate high speed
position-based events.

The SPiiPlus EtherCAT-based motion controllers provide the user with up to 6 identical PEG engine
units. Each PEG engine can operate in one of the following two modes:

PEG is not supported for absolute encoders.

SinCos encoders can be fired on zero crossing only.

Incremental PEG mode

> Provides the ability to generate a fix width pulse whenever a fixed position interval has
passed, starting at a predefined start point and ending at a predefined end point

> Incremental PEG commands are summarized in Incremental PEG Mode of Operation.

> Running Incremental PEG leads you through a step-by-step approach to setting and
activating Incremental PEG

> A programming example is given in PEG_I.

Random PEG mode

> Provides the ability to control a PEG pulse and a four-bit vector at pre-defined positions,
which are stored as a 256/1024 member user-defined array

> Random PEG commands are summarized in Random PEG Mode of Operation. It also leads
you through a step-by-step approach to setting and activating Random PEG.

> A programming example is given in PEG_R.

1024 member user-defined array is supported by SPiiPlusCMba-X/SPiiPlusCMhp-
X/UDMba-X/UDMhp-X (rev. B2 and later), SPiiPlusNT(DC)-LT/HP/LD/NP (rev. D1 and
later), NPMpm, NPApm, and MP4U only.

Each PEG engine can generate 1 PEG pulse: PEGx_PULSE (both in Incremental and Random modes)
signal and 4 state signals (in Random mode only): PEGx_STATEy - a 4-bit output vector, on each
random position PEG event. State signals are set to a defined logical level or set to generate a pulse
on transition, as defined by a 256/1024 member PEGx_STATE_ARRAY integer array.

The PEG engines can be configured to be triggered by a position of any of the controller Encoders,
with certain restrictions that result from the board’s architecture.

253Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The PEG engine outputs can be assigned to 10 physical interface outputs and the PEG pulse width
and polarity are programmable.

Routing of Fast General Purpose Outputs to the Physical PEG Outputs

The PEG pulse signals can be assigned in parallel to opto-isolated General Purpose digital outputs.
There are 10 physical output pins that are shared between the PEG engines’ outputs. A special
command: ASSIGNPOUTS provides the means for routing Fast General Purpose outputs to the
physical PEG outputs.

The schematic block diagram of the PEG engines’ architecture (see Figure 8-1) is useful for
understanding the signal paths and routing. To configure the PEG operation, see ASSIGNPOUTS for
the mapping of PEG engine outputs to physical outputs.

8.2.1 PEG Modes and Operation

This chapter provides details for the command sequence and actions for the two PEG modes. In
general, PEG operation consists of the following phases:

1. Configuring the PEG engines.

2. PEG engine’s activation command upon verification of PEG being ready.

3. Start of movement

4. Optional STOP command to avoid undesired PEG firings at end of motion or while reversing
movement direction.

For complete details on each command and its parameters see PEG Commands.

The following features are supported by ACS Motion Control products starting at the harware
revisions specified in Table 8-1.

> Time-based PEG

> Incremental PEG (PEG_I) Improvement - error accumulation prevention by taking into
account the rounding of the distance between incremental PEG events

> Fast loading of random PEG arrays

Table 8-1. Minimum HW Revision that supports Position Events Generation (PEG)
Improvements

Product Minimum HW Revision

SPiiPlusNT-LT / DC-LT D1

SPiiPlusNT-HP / DC-HP D1

SPiiPlusNT-LD / DC-LD D1

UDMNT A6

254Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Product Minimum HW Revision

SPiiPlusCMNT / UDMPM B8/ B9

UDMPC C9

SPiiPlusSANT / SADC N/A

SPiiPlusCMBA UDMBA B8

SPiiPlusCMHP / UDMHP B8

UDMLC A8

UDMMC A1

UDILT B2

UDIHP B2

PDICL A2

SPiiPlusCMHV / UDMHV N/A

UDMSD N/A

NPMPM N/A

NPMPC N/A

UDMCB A

UDMPA A

8.2.1.1 Incremental PEG Mode of Operation

8.2.1.1.1 Incremental PEG Commands

Table 8-2 summarizes the commands used for Incremental PEG setup and operation.

Table 8-2. Commands Associated with Incremental PEG

Activity Command Used Description

Encoder
assignment

ASSIGNPEG
Assigns an encoder to a PEG engine and GP physical
output connection.

255Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Activity Command Used Description

Digital
output pins
assignment

ASSIGNPOUTS Assignment of physical output pins.

Incremental
PEG setting

PEG_I
Defines Incremental PEG parameters. PEG_I activates
the PEG engine.

Check if
ready for
PEG
movement

AST.#PEGREADY
Used to check that the loading of PEG parameters is
complete (‘1’ means Ready). In this way movement can
start safely without losing positions.

Enable PEG STARTPEG
Restart PEG at the current position if STOPPEG has
been issued and the last_point has not been reached.

Disable PEG STOPPEG Halts the PEG engine for the specified axis (optional).

8.2.1.1.2 Running Incremental PEG

The Incremental PEG is set and activated by issuing the following commands:

1. Configuring specific PEG engines to specific encoders through the ASSIGNPEG command.

2. Assigning the physical output pins through the ASSIGNPOUTS command.

3. Setting Incremental PEG for the specific axis using PEG_I axis, width, first_point, interval,
last_point

4. Waiting for PEGREADY to be ‘1’ before activating PEG.

5. Starting PEG.

PEG firing is initiated if the specific PEG engine is configured properly by ASSIGNPEG and
PEG_I is issued. PEG continues to be fired periodically until last_point is reached.

Incremental PEG is activated periodically starting from the first_point position event, and
stops at the last_point position event. All pulses, including the last pulse, are of equal
duration (width).

PEG is generated only after first_point is reached. If first_point is not reached during the
motion, PEG will not be generated.

It is recommended that first_point position be the maximum current position for
movement in the positive direction and the minimum current position for movement in
the negative direction, before PEG engine activation.

Stopping the PEG motion with STOPPEG (optional).

6. STOPPEG is a synchronous delayed command which stops the PEGs from firing.

Since the Incremental PEG mechanism does not keep track of the direction of the
movement, you may have to issue STOPPEG after last_point has been reached. This is

256Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

needed in order to avoid unintentional PEG firing due to a rapid reversal of a movement’s
direction once last_point has been passed.

If STOPPEG has been executed before last_point has been reached, you can use STARTPEG
to continue PEG from the current position.

8.2.1.2 Random PEG Mode of Operation

8.2.1.2.1 Random PEG Commands

Table 8-3 summarizes the commands used for Random PEG setup and operation.

Table 8-3. Commands Associated with Random PEG

Activity Command Used Description

Output
Position
array

PEGx_POS_
ARRAY

A 256/1024 member real array defining the PEG event
positions.

Output State
array

PEGx_STATE_
ARRAY

A 256/1024 member integer array defining the 4-bit
logical states associated with the PEG event positions.

Encoder
assignment

ASSIGNPEG
Assigns an encoder to a PEG engine and GP physical
output connection.

Digital
Output pin
assignments

ASSIGNPOUTS Assignment of physical output pins.

Random PEG
definition

PEG_R
Define the Random PEG parameters. PEG_R activates
the PEG engine.

Check if
ready for
PEG
movement

AST.#PEGREADY
Used to check that the loading of PEG parameters is
complete (‘1’ means Ready). In this way movement can
start safely without losing positions.

Enable PEG STARTPEG
Restart PEG at the current position if STOPPEG has
been issued and the last_point has not been reached.

Disable PEG STOPPEG Disable the PEG engine for the specified axis (optional).

257Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

For each PEGx_POS_ARRAY[n] position, PEGx_STATE_ARRAY[n] defines the PEGx_
STATEy outputs.

The maximum number of members in the arrays is limited to 256/1024. If the value is
greater than 256/1024, an error will be generated.

1024 member user-defined array is supported by SPiiPlusCMba-x/SPiiPlusCMhp-
x/UDMba-x/UDMhp-x (rev. B2 and later) and SPiiPlusNT(DC)-LT/HP/LD/NP (rev. D1 and
later), NPMpm, NPApm, and MP4U only.

8.2.1.2.2 Running Random PEG

The Random PEG is set and activated by issuing the following commands:

1. Setting the event position array: PEGx_POS_ARRAY. The array has a maximum of 256/1024
members.

2. Setting the output states array: PEGx_STATE_ARRAY. This array contains the state vectors
which are to be issued per position event of the PEGx_POS_ARRAY.

3. Assigning the specific PEG engine to a specific encoder through the ASSIGNPEG command.

4. Assigning the physical output pins through the ASSIGNPOUTS command.

5. Setting Random PEG for the specific axis using PEG_R axis, width, mode, first_index, last_
index, PEGx_POS_ARRAY, PEGx_STATE_ARRAY.

6. Waiting for PEGREADY to be ‘1’ before activating PEG.

7. Starting PEG.

PEG firing is initiated if the specific PEG engine is configured properly by ASSIGNPEG and
ASSIGNPOUTS and PEG_R is issued. PEG continues to be fired upon position match until
last_point is reached.

8. Stopping PEG with STOPPEG (optional).

STOPPEG stops the PEGs from firing. If STOPPEG has been issued and the motion has not
reached last_point, you can use STARTPEG to continue PEG from the current position.

8.2.1.2.3 Time-Based PEG Support

Time-based PEG support is achieved using PEG_I and PEG_R commands.

The commands use the following arguments:

> Time-based-pulses - Optional parameter - The number of time-based pulses generated
after each encoder-based pulse, the range is from 0 to 65,535.

> Time-based-period - Optional parameter - The period of time-based pulses (milliseconds),
the range is from 0.00005334 to 1.7476.
The time-based period must be at least pulse width + 26.6667 nsec (minimum distance
between two pulses).

258Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.2.1.2.4 Loading Random PEG Arrays

The Random PEG Arrays are loaded by issuing the following commands:

1. Load arrays.

2. Activate PEG.

3. Start movement.

The movement will cause the PEG signals to be fired each time a position match event
occurs. Following the last_point event, the sequence above is repeated with the
movement activated in the opposite direction.

This still allows loading 3 axes of the same Servo Processor in parallel, for example:

PEG_R AXIS0, 1, 0x4444, 0, 255, Y_ARR, Y_STAT
PEG_R AXIS1, 1, 0x4444, 0, 255, Y_ARR, Y_STAT
PEG_R AXIS2, 1, 0x4444, 0, 255, Y_ARR, Y_STAT

TILL AST(AXIS0).#PEGREADY
TILL AST(AXIS1).#PEGREADY
TILL AST(AXIS2).#PEGREADY

4. In contrast to SPiiPlusCM/SPiiPlusSA/SPiiPlus3U, the PEG pulse is inversed. Use PEG_R/i or
PEG_I/i to overcome this issue.

Table 8-4 shows the typical times for loading PEG engines on condition that the products match the
versions in Table 8-1.

Otherwise the typical times for loading PEG engines are as listed in Table 8-5.

Table 8-4. Typical Times to Load PEG Engines for the products that support fast loading of
Random PEG arrays

Numb
er of
Points
to load

Typical Time to Load 1
PEG Engine

[msec * CTIME]

Typical Time to Load 2
PEG Engines

[msec * CTIME]

Typical Time to Load 3
PEG Engines

[msec * CTIME]

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

1 13 13 14 14 15 15

2 13 13 14 14 15 15

4 13 13 14 14 15 15

8 13 13 14 14 15 15

16 13 14 14 16 16 18

259Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Numb
er of
Points
to load

Typical Time to Load 1
PEG Engine

[msec * CTIME]

Typical Time to Load 2
PEG Engines

[msec * CTIME]

Typical Time to Load 3
PEG Engines

[msec * CTIME]

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

32 14 15 17 18 19 21

64 16 17 21 22 24 27

128 19 22 27 32 33 42

256 25 32 39 51 52 71

512 38 52 65 90 91 129

1024 64 91 117 167 168 244

HSSI devices (HSSI-IO16, HSSI-ED2, etc.) cannot be used for the same Servo Processor
when fast loading of Random PEG arrays is activated. SPRT and SPINJECT commands
cannot be used for the same Servo Processor when fast loading of Random PEG arrays
is activated.

Table 8-5. Typical Times to Load PEG Engines for the products that do not support fast loading
of Random PEG arrays

Numb
er of
Points
to load

Typical Time to Load 1
PEG Engine

[msec * CTIME]

Typical Time to Load 2
PEG Engines

[msec * CTIME]

Typical Time to Load 3
PEG Engines

[msec * CTIME]

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

1 16 17 24 25 29 30

2 17 18 26 28 31 33

4 19 21 30 34 37 42

8 23 27 38 46 49 60

260Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Numb
er of
Points
to load

Typical Time to Load 1
PEG Engine

[msec * CTIME]

Typical Time to Load 2
PEG Engines

[msec * CTIME]

Typical Time to Load 3
PEG Engines

[msec * CTIME]

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

without
specifyin
g PEG
States

with
specifyin
g PEG
States

16 31 39 55 70 73 100

32 48 64 87 119 122 169

64 81 112 151 216 218 315

128 146 210 281 410 413 605

256 276 406 539 798 800 1185

512 537 796 1056 1573 1576 2350

1024 1060 1579 2090 3124 3127 4677

Since the priority of loading PEG engine command is low, it is recommended not to use
‘SETSP’ / ‘GETSP’ commands and change tuning parameters in parallel with the loading
process, otherwise loading times can be higher than the times mentioned in the table

8.2.1.2.5 SPiiPlusCM / SPiiPlusSA / SPiiPlus3U PEG Compatibility

In distinction to SPiiPlusCM/SPiiPlusSA/SPiiPlus3U PEG operation, the following changes should be
noted:

> Time-based-pulses and time-based-period which are optional parameters of the PEG_R
command used by SPiiPlusCM/SPiiPlusSA/SPiiPlus3U products are supported as mentioned
in Table 8-1.

> ASSIGNPEG - The command’s parameters have been changed.

> PEG interrupts are not supported.

> In contrast to SPiiPlusCM/SPiiPlusSA/SPiiPlus3U, the PEG pulse is inversed. Use PEG_R/i or
PEG_I/i to overcome this issue.

8.2.1.3 PEG Commands

This chapter descibes the PEG engine mapping assignments and details the structure of all PEG
commands.

261Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.2.1.3.1 PEG Output Mapping

The PEG output state signals can be configured to reflect the programmed states or be set to
pulses (negative or positive) which are generated on the PEG event. The MC4U provides 10 physical
PEG signals through the pins of its front panel Encoder connectors. Thus, an assignment of the 30
PEG engines’ outputs, i.e., 1 pulse and 4 state signals per engine, to 10 physical output pins is
defined as part of the engines’ configuration.

Use the ASSIGNPEG and ASSIGNPOUTS commands to assign the mapping. A schematic block diagram
aids in understanding the PEG engine output mapping to physical outputs.

Figure 8-1. PEG Engines Output Mapping

PEG engines and associated output signals are indexed 0, 1, 2 and 4, 5, 6. Engines 3 and 7 are
reserved for future expansion. It should be noted that some of the PEG output pins are shared with
pins assigned for HSSI outputs and thus cannot be used simultaneously.

There can be either 4 or 8 Encoder connectors, depending on the controller model, for example,
CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/ PDIcl-x may
have up to four encoders and three PEG engines. The assignment of Encoders to the controller’s
Servo Processor imposes certain restrictions on the PEG configurations, as detailed in this
document:

> Encoders: 0(X), 1(Y), 2(A), and 3(B) are physically assigned to Servo Processor 0

> Encoders: 4(Z), 5(T), 6(C), and 7(D) are physically assigned to Servo Processor 1

262Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.2.1.3.2 ASSIGNPEG

Description

The ASSIGNPEG function is used for engine-to-encoder assignment as well as for the additional
digital outputs assignment for use as PEG pulse outputs. The parameters are different from the
original SPiiPlus definitions.

Syntax

ASSIGNPEG[/f] axis, engines_to_encoders_code, gp_out_assign_code

Arguments

axis

The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Axis parameter can be any axis number of the same unit.

engines_
to_
encoders_
code

Bit code for engines-to-encoders mapping according to:

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders
(Servo Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders
(Servo Processor 1)

SPiiPlus CMnt-x/UDMpm-x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-
x/CMhv-x/UDMhv-x/UDMnt-x/UDMpa-x/UDMcb-x Mapping PEG Engines to
Encoders (Servo Processor 0)

UDMlc-x/UDIlt-x/UDIhp-x/UDMmc-x/PDIcl-x/ Mapping PEG Engines to Encoders
(Servo Processor 0)

NPMpm-x/NPMpc-x Mapping PEG Engines to Encoders (Servo Processor 0)

gp_out_
assign_
code

General purpose outputs assignment to use as PEG pulse outputs according
to:

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs
Assignment for Use as PEG Pulse Outputs (Servo Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs
Assignment for Use as PEG Pulse Outputs (Servo Processor 1)

SPiiPlus CMnt-x/UDMpm-x/CMhv-x/UDMhv-x General Purpose Outputs
Assignment for Use as PEG Pulse Outputs (Servo Processor 0)

UDMnt-x/UDMpa-x/UDMcb-x General Purpose Outputs Assignment for Use as
PEG Pulse Outputs (Servo Processor 0)

The axis parameter actually serves for determining which Servo Processor is used.

263Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Comments

> ASSIGNPEG is a blocking command - the ACSPL+ progam moves to the next line or
command only after this command has been fully executed or an error is generated.

> The axis parameter can be any of the axes controlled by the same servo processor, the
result will be the same.

> If switch: /f is included, fast loading of Random PEG arrays is activated.

HSSI devices (HSSI-IO16, HSSI-ED2, etc.) cannot be used for the same Servo Processor
when fast loading of Random PEG arrays is activated.
SPRT and SPINJECT commands cannot be used for the same Servo Processor when fast
loading of Random PEG arrays is activated.

Mapping PEG engines to encoders

Table 8-6. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders (Servo
Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders (Servo Processor
0)

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

000 (default) PEG0 PEG1 PEG2 no

001 PEG0 PEG1 no PEG2

010
PEG0

PEG2
PEG1 no no

011 PEG0
PEG1

PEG2
no no

100

PEG0

PEG1

PEG2

no no no

101 no

PEG0

PEG1

PEG2

no no

264Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The Bit Code affects all of the connectors in the row, see Bit Code assignment
example.

Table 8-7. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders (Servo
Processor 1)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders (Servo Processor
1)

Bit Code Encoder 4(Z) Encoder 5(T) Encoder 6(C) Encoder 7(D)

000 (default) PEG4 PEG5 PEG6 no

001 PEG4 PEG5 no PEG6

010
PEG4

PEG6
PEG5 no no

011 PEG4
PEG5

PEG6
no no

100

PEG4

PEG5

PEG6

no no no

101 no

PEG4

PEG5

PEG6

no no

The Bit Code affects all of the connectors in the row, see Bit Code assignment
example.

265Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-8. SPiiPlus CMnt-x/UDMpm-x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-
x/UDMhv-x/UDMnt-x/UDMpa-x/UDMcb-x Mapping PEG Engines to Encoders (Servo Processor

0)

SPiiPlus CMnt-x/UDMpm-x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-x/UDMhv-
x/UDMnt-x/UDMpa-x/UDMcb-x Mapping PEG Engines to Encoders (Servo Processor 0)

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

000 (default) PEG0 PEG1 PEG22

001 PEG0 PEG1 no PEG21, 2

010
PEG0

PEG22
PEG1 no

011 PEG0
PEG1

PEG22
no

100

PEG0

PEG1

PEG22

no no

101 no

PEG0

PEG1

PEG22

no

110

PEG01, 2

PEG11, 2

PEG21, 2

111
PEG01, 2

PEG21, 2
PEG11, 2

1 These combinations are not supported by UDMpc-x.
2These combinations are not supported by UDMnt-x.

The Bit Code affects all of the connectors in the row, see Bit Code assignment
example.

266Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-9. UDMlc-x/UDIlt-x/UDIhp-x/UDMmc-x/PDIcl-x/ Mapping PEG Engines to Encoders
(Servo Processor 0)

UDMlc-x/UDIlt-x/UDIhp-x/UDMmc-x/PDIcl-x/ Mapping PEG Engines to Encoders (Servo
Processor 0)

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

000 (default) PEG0 no no no

001 no PEG0 no no

010 no no PEG0 no

011 no no no PEG01

100 no no no no

101 no no no no

110 no no no no

1 These combinations are not supported by LCM-x.

The Bit Code affects all of the connectors in the row, see Bit Code assignment
example.

Table 8-10. NPMpm-x/NPMpc-x Mapping PEG Engines to Encoders (Servo Processor 0)

NPMpm-x/NPMpc-x Mapping PEG Engines to Encoders (Servo Processor 0)

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

000 (default) PEG0 PEG1 no no

001 PEG1 PEG0 no no

010
PEG0

PEG1
no no no

011 no
PEG0

PEG1
no no

100 no PEG1 PEG0 no

267Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

NPMpm-x/NPMpc-x Mapping PEG Engines to Encoders (Servo Processor 0)

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

101 no PEG1 no PEG0

110 PEG0 no PEG1 no

111 PEG0 no no PEG1

Bit Code assignment example

The Bit Code: 001 for an axis associated with Servo Processor 0 performs the following
assignments:

> PEG0 g Encoder 0

> PEG1 g Encoder 1

> PEG2 g Encoder 3

Or for CMnt-x/UDMpm-x/CMhv-x/UDMhv-x:

> PEG0 g Encoder 0(X)

> PEG1 g Encoder 1(A)

For an axis associated with Servo Processor 1 it performs the following assignments:

> PEG4 g Encoder 4

> PEG5 g Encoder 5

> PEG6 g Encoder 7

General purpose outputs assignment to use as PEG pulse outputs

Table 8-11. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment
for Use as PEG Pulse Outputs (Servo Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment for Use as
PEG Pulse Outputs (Servo Processor 0)

Bit Code GP Out 0 GP Out 1 GP Out 2 GP Out 3

0000 (default) GP Out 0 GP Out 1 GP Out 2 GP Out 3

0001 PEG0_PULSE GP Out 1 GP Out 2 GP Out 3

0010 GP Out 0 PEG2_PULSE GP Out 2 GP Out 3

0011 GP Out 0 GP Out 1 PEG1_PULSE GP Out 3

0100 GP Out 0 GP Out 1 GP Out 2 Reserved

268Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment for Use as
PEG Pulse Outputs (Servo Processor 0)

Bit Code GP Out 0 GP Out 1 GP Out 2 GP Out 3

0101 GP Out 0 PEG2_PULSE GP Out 2 Reserved

0110 PEG0_PULSE GP Out 1 PEG1_PULSE GP Out 3

0111 PEG0_PULSE PEG2_PULSE PEG1_PULSE Reserved

1000 - 1111 Reserved Reserved Reserved Reserved

The Bit Code affects the entire row, see Bit Code assignment example.

Table 8-12. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment
for Use as PEG Pulse Outputs (Servo Processor 1)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment for Use as
PEG Pulse Outputs (Servo Processor 1)

Bit Code GP Out 4 GP Out 5 GP Out 6 GP Out 7

0000 (default) GP Out 4 GP Out 5 GP Out 6 GP Out 7

0001 PEG4_PULSE GP Out 5 GP Out 6 GP Out 7

0010 GP Out 4 PEG6_PULSE GP Out 6 GP Out 7

0011 GP Out 4 GP Out 5 PEG5_PULSE GP Out 7

0100 GP Out 4 GP Out 5 GP Out 6 Reserved

0101 GP Out 4 PEG6_PULSE GP Out 6 Reserved

0110 PEG4_PULSE GP Out 5 PEG5_PULSE GP Out 7

0111 PEG4_PULSE PEG6_PULSE PEG5_PULSE Reserved

1000 - 1111 Reserved Reserved Reserved Reserved

The Bit Code affects the entire row, see Bit Code assignment example.

269Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-13. SPiiPlus CMnt-x/UDMpm-x/CMhv-x/UDMhv-x General Purpose Outputs Assignment
for Use as PEG Pulse Outputs (Servo Processor 0)

SPiiPlus CMnt-x/UDMpm-x/CMhv-x/UDMhv-x General Purpose Outputs Assignment for Use as
PEG Pulse Outputs (Servo Processor 0)

Bit Code GP Out 0 GP Out 1 GP Out 2 GP Out 3

0000 (default) GP Out 0 GP Out 1 GP Out 2 GP Out 3

0001 PEG0_PULSE GP Out 1 GP Out 2 GP Out 3

0010 GP Out 0 PEG1_PULSE GP Out 2 GP Out 3

0011 GP Out 0 GP Out 1 PEG2_PULSE GP Out 3

0100 GP Out 0 GP Out 1 GP Out 2 GP Out 3

0101 GP Out 0 PEG1_PULSE GP Out 2 GP Out 3

0110 PEG0_PULSE GP Out 1 PEG2_PULSE GP Out 3

0111 PEG0_PULSE PEG1_PULSE PEG2_PULSE GP Out 3

1000 - 1111 Reserved Reserved Reserved Reserved

The Bit Code affects the entire row, see Bit Code assignment example.

Table 8-14. UDMnt-x/UDMpa-x/UDMcb-x General Purpose Outputs Assignment for Use as PEG
Pulse Outputs (Servo Processor 0)

UDMnt-x/UDMpa-x/UDMcb-x General Purpose Outputs Assignment for Use as PEG Pulse
Outputs (Servo Processor 0)

Bit Code GP Out 0 GP Out 1

0000 (default) GP Out 0 GP Out 1

0001 PEG0_PULSE GP Out 1

0010 GP Out 0 PEG1_PULSE

0011 PEG1_PULSE GP Out 1

0100 GP Out 0 PEG0_PULSE

270Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

UDMnt-x/UDMpa-x/UDMcb-x General Purpose Outputs Assignment for Use as PEG Pulse
Outputs (Servo Processor 0)

Bit Code GP Out 0 GP Out 1

0101 PEG0_PULSE PEG1_PULSE

0110 - 1111 Reserved Reserved

Bit Code assignment example

For example, for an axis associated with Servo Processor 0, 0110 switches GP Out 0 to PEG0_PULSE
and GP Out 2 to PEG1_PULSE.

The same Bit Code applied to an axis associated with Servo Processor 1 switches GP Out 4 to PEG4_
PULSE and GP Out 6 to PEG5_PULSE.

All other GP Out assignments are unchanged.

Table 8-15. Engine to Encoder Assignment for IDMsm, ECMsm, and UDMsm

PEG Engine Bits HEX Code
Encoder
3

Encoder
2

Encoder
1

Encoder
0

0
0..7

00
(default)

PEG0

01 PEG0

02 PEG0

03 PEG0

1
8..15

00 PEG1

01
(default)

PEG1

02 PEG1

03 PEG1

2
16..23

00 PEG2

01 PEG2

02
(default)

PEG2

03 PEG2

271Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

PEG Engine Bits HEX Code
Encoder
3

Encoder
2

Encoder
1

Encoder
0

3 24..31

00 PEG3

01 PEG3

02 PEG3

03 PEG3

Example for IDMsm/ECMsm

assignpeg 0, 0x03020100

This code configures the default mapping: PEG0 to Encoder0, PEG1 to Encoder 1, PEG2 to Encoder2
and PEG3 to Encoder3.

Comments

ASSIGNPEG is a blocking command in the sense that the ACSPL+ progam moves to the next line or
command only after this command has been fully executed or an error is generated.

The axis parameter can be any of the axes controlled by the same servo processor, the result will
be the same.

Related ACSPL+ Commands

PEG_I, ASSIGNPOUTS, PEG_R, STARTPEG, STOPPEG

COM Library Methods

None

C Library Functions

acsc_AssignPegNT

8.2.1.3.3 ASSIGNPOUTS

Description

The ASSIGNPOUTS function is used for setting Fast General Purpose output pins assignment and
mapping between FGP_OUT signals to the bits of the ACSPL+ OUT(x) variable, where x is the index
that has been assigned to the controller in the network during System Configuration.

272Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The assignments can be obtained by running #SI in the SPiiPlus MMI Appication Studio
Communication Terminal. For example, the following is a fragment from the response
to this command:

Axes Assignment: 8,9,10,11
Inputs/Outputs Assignment:

Digital inputs (IN): 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7
Digital outputs (OUT): 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7

OUT is an integer array that can be used for reading or writing the current state of the General
Purpose outputs - see SPiiPlus ACSPL+ Command & Variable Reference Guide.

Each PEG engine has 1 PEG pulse output and 4 state outputs for a total of 5 outputs per PEG engine
and a total of 30 outputs for the whole PEG generator. The controller supports 10 physical output
pins that can be assigned to the PEG generator. The user defines which 10 outputs (of the 30) of
the PEG generator are assigned to the 10 available physical output pins. Some of the output pins
are shared between the PEG and the HSSI.

The tables below define how each of the 30 outputs of the 6 PEG engines can be routed to the 10
physical output pins - 4 PEG out signals, 3 PEG state signals, and 3 HSSI signals. It needs to be noted
that some of the signals cannot be routed to the physical pins.

Syntax

ASSIGNPOUTSaxis, output_index, bit_code

Arguments

axis

The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

For controllers with firmware version 2.15 or higher, the axis parameter can be
any axis number of the unit.

output_
index

0 for OUT_0, 1 for OUT_1, ..., 9 for OUT_9

273Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

bit_
code

Bit code for engine outputs to physical outputs mapping according to:

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 1)

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0)

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0)

CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0)

CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0)

UDMnt-x/UDMpa-x/UDMcb-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

UDMlc-x/UDMmc-x/UDIlt-x/UDIhp-x/PDIcl-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0)

NPMpm-x/NPMpc-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

IDMsm/UDMsm/ECMsm Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

Mapping of PEG engine outputs to physical outputs

Table 8-16. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_4 (HSSI1_
DO)

OUT_3
(T_PEG)

OUT_2
(Z_PEG)

OUT_1
(Y_PEG)

OUT_0
(X_PEG)

000
(default)

HSSI1_DO
PEG5_
PULSE

PEG4_
PULSE

PEG1_
PULSE

PEG0_
PULSE

001 PEG0_STATE1
PEG0_
STATE0

PEG2_
PULSE

PEG1_
STATE0

PEG4_
STATE0

010 PEG2_STATE1
PEG2_
STATE0

PEG1_
STATE1

Reserved Reserved

011 Reserved Reserved Reserved Reserved Reserved

274Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_4 (HSSI1_
DO)

OUT_3
(T_PEG)

OUT_2
(Z_PEG)

OUT_1
(Y_PEG)

OUT_0
(X_PEG)

100 Reserved Reserved Reserved Reserved Reserved

111 Reserved FGP_OUT3 FGP_OUT2 FGP_OUT1 FGP_OUT0

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see Bit Code: 111.

Table 8-17. SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 1)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 1)

Bit Code
OUT_
9HSSI0_CON

OUT_
8HSSI0_DO

OUT_7X_
STATE2

OUT_6X_
STATE1

OUT_5X_
STATE0

000
(default)

HSSI0_CON HSSI0_DO
PEG0_
STATE2

PEG0_
STATE1

PEG0_
STATE0

001
PEG0_
STATE0

PEG0_
STATE2

PEG2_
STATE0

PEG1_
STATE1

PEG1_
STATE0

010
PEG2_
STATE1

PEG5_
STATE0

PEG6_
PULSE

PEG5_
PULSE

PEG4_
PULSE

011
PEG6_
STATE1

Reserved
PEG4_
STATE1

PEG4_
STATE0

Reserved

100 Reserved Reserved Reserved Reserved Reserved

111 Reserved Reserved FGP_OUT6 FGP_OUT5 FGP_OUT4

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see Bit Code: 111.

275Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-18. CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0)

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_1
(Y_PEG)

OUT_0
(X_PEG)

000 (default) PEG1_PULSE PEG0_PULSE

001 Encoder X Phase B
Encoder X
Phase A

010 Encoder Y Phase B
Encoder Y
Phase A

011 Reserved Reserved

100 Reserved Reserved

111 FGP_OUT1 FGP_OUT0

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see Bit Code: 111.

Table 8-19. CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to
Physical Outputs (Servo Processor 0)

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_6
(X_STATE1)

OUT_5
(X_STATE0)

000 (default) PEG0_OUT1 PEG0_OUT0

001 PEG1_OUT1 PEG1_OUT0

010 PEG2_OUT1 PEG2_OUT0

011 Encoder X Phase B Encoder X Phase A

100 Encoder Y Phase B Encoder Y Phase A

101 Encoder X INDEX Encoder X INDEX

276Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_6
(X_STATE1)

OUT_5
(X_STATE0)

110 Encoder Y INDEX Reserved

111 Reserved Reserved

Table 8-20. CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0)

CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

Bit Code
OUT_4
(Y_
STATE2)

OUT_3
(Y_
STATE1)

OUT_2
(Y_
STATE0)

OUT_1
(Y_PEG)

OUT_0
(X_PEG)

000
(default)

PEG1_
STATE2

PEG1_
STATE1

PEG1_
STATE0

PEG1_PULSE PEG0_PULSE

001
PEG0_
STATE2

PEG0_
STATE1

PEG0_
STATE0

Encoder X
Phase B

Encoder X
Phase A

010
PEG2_
STATE2

PEG2_
STATE1

PEG2_
STATE0

Encoder Y
Phase B

Encoder Y
Phase A

011
Encoder
A INDEX

Encoder
A
Phase B

Encoder
A Phase
A

Encoder A
Phase B

Encoder A
Phase A

100 Reserved Reserved Reserved PEG2_PULSE Reserved

101 Reserved Reserved Reserved
PEG2_PULSE or
PEG1_PULSE

PEG0_PULSE or
PEG2_PULSE

110 Reserved Reserved Reserved
PEG0_PULSE
or PEG1_PULSE
or PEG2_PULSE

PEG0_PULSE or
PEG1_PULSE or
PEG2_PULSE

111 Reserved Reserved
FGP_
OUT2

FGP_OUT1 FGP_OUT0

277Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see Bit Code: 111.

For Bit Codes 101 and 110, the OUT_0 (X_PEG) and OUT_1 (Y_PEG) mappings are
supported for default PEG pulse polarity only.

Table 8-21. CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0)

CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

Bit Code
OUT_9
(Y_
STATE3)

OUT_8
(X_STATE3)

OUT_7
(X_STATE2)

OUT_6
(X_STATE1)

OUT_5
(X_STATE0)

000
(default)

PEG1_
STATE3

PEG0_
STATE3

PEG0_
STATE2

PEG0_
STATE1

PEG0_
STATE0

001
PEG0_
STATE3

PEG1_
STATE3

PEG1_STATE2 PEG1_STATE1
PEG1_
STATE0

010
PEG2_
STATE3

PEG2_
STATE3

PEG2_
STATE2

PEG2_STATE1
PEG2_
STATE0

011
PEG2_
STATE0

Encoder Y
Phase B

Encoder Y
Phase A

Encoder X
Phase B

Encoder X
Phase A

100
PEG2_
STATE1

Encoder Y
INDEX

Reserved
EncoderY
Phase B

Encoder Y
Phase A

101 Reserved Reserved Reserved
Encoder X
INDEX

Encoder X
INDEX

110 Reserved
PEG2_
PULSE

PEG2_PULSE
Encoder Y
INDEX

PEG2_
PULSE

111 Reserved Reserved Reserved Reserved Reserved

278Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-22. UDMnt-x/UDMpa-x/UDMcb-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

UDMnt-x/UDMpa-x/UDMcb-x Mapping of Engine Outputs to Physical Outputs (Servo Processor
0)

Bit Code
OUT_1
(X_STATE1)

OUT_0
(X_STATE0)

000 (default) PEG1_PULSE PEG0_PULSE

001 Encoder X Phase B Encoder X Phase A

010 Encoder Y Phase B Encoder Y Phase A

011 PEG0_ STATE0 PEG1_ STATE0

100 PEG1_ STATE0 PEG0_ STATE0

101 Reserved Reserved

110 Reserved Reserved

111 FGP_OUT1 FGP_OUT0

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see Bit Code: 111.

Table 8-23. UDMlc-x/UDMmc-x/UDIlt-x/UDIhp-x/PDIcl-x Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0)

UDMlc-x/UDMmc-x/UDIlt-x/UDIhp-x/PDIcl-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_0
(X_PEG)

000 (default) PEG0_PULSE

001 Reserved

010 Reserved

011 Reserved

100 Reserved

279Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

UDMlc-x/UDMmc-x/UDIlt-x/UDIhp-x/PDIcl-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

Bit Code
OUT_0
(X_PEG)

101 Reserved

110 Reserved

111 FGP_OUT0

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see see Bit Code: 111.

Table 8-24. NPMpm-x/NPMpc-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

NPMpm-x/NPMpc-x Mapping of Engine Outputs to Physical Outputs (Servo Processor 0)

Bit Code
OUT_1
(Y_PEG)

OUT_0
(X_PEG)

000 (default) PEG1_PULSE PEG0_PULSE

001 PEG1_STATE0 PEG0_STATE0

010 PEG0_STATE0 PEG1_STATE0

011 PEG1_STATE1 PEG0_STATE1

100 PEG0_STATE1 PEG1_STATE1

101 Reserved Reserved

110 Reserved Reserved

111 FGP_OUT1 FGP_OUT0

Bit Code: 111

The Bit Code: 111, both for Servo Processor 0 and Servo Processor 1, is used for switching the
physical output pins to Fast General Purpose Outputs: FGP_OUT0 to FGP_OUT6. The state of the
Fast General Purpose Outputs can be read or changed using the ACSPL+ OUT(x) variable. The Fast
General Purpose Outputs are mapped as follows:

FGP_OUT0 is mapped to bit 16 of the ACSPL+ OUT(x) variable

FGP_OUT1 is mapped to bit 17 of the ACSPL+ OUT(x) variable

280Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

FGP_OUT2 is mapped to bit 18 of the ACSPL+ OUT(x) variable

FGP_OUT3 is mapped to bit 19 of the ACSPL+ OUT(x) variable

FGP_OUT4 is mapped to bit 20 of the ACSPL+ OUT(x) variable

FGP_OUT5 is mapped to bit 21 of the ACSPL+ OUT(x) variable

FGP_OUT6 is mapped to bit 22 of the ACSPL+ OUT(x) variable

Table 8-25. IDMsm/UDMsm/ECMsm Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

OUT_0, OUT_1, OUT_2, OUT_3: {0,1,2,3}

Bit Code
OUT_3 (OUT_
CONF_3)

OUT_2 (OUT_
CONF_2)

OUT_1 (OUT_
CONF_1)

OUT_0 (OUT_
CONF_0)

000 PEG0_State3 PEG0_State2 PEG0_State1 PEG0_State0

001 PEG1_State3 PEG1_State2 PEG1_State1 PEG1_State0

010 PEG2_State3 PEG2_State2 PEG2_State1 PEG2_State0

011 PEG3_State3 PEG3_State2 PEG3_State1 PEG3_State0

100 Reserved Reserved Reserved Reserved

101 Reserved Reserved Reserved Reserved

110 Reserved Reserved Reserved Reserved

111
(Default)

GP_OUT3 GP_OUT2 GP_OUT1 GP_OUT0

OUT_4, OUT_5, OUT_6, OUT_7

Bit Code
OUT_7 (OUT_
CONF_7)

OUT_6 (OUT_
CONF_6)

OUT_5 (OUT_
CONF_5)

OUT_4 (OUT_
CONF_4)

000 Reserved Reserved Reserved Reserved

001 Reserved Reserved Reserved Reserved

010 Reserved Reserved Reserved Reserved

011 Reserved Reserved Reserved Reserved

100 Reserved Reserved Reserved Reserved

101 Reserved Reserved Reserved Reserved

110 Reserved Reserved Reserved Reserved

281Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Code
OUT_7 (OUT_
CONF_7)

OUT_6 (OUT_
CONF_6)

OUT_5 (OUT_
CONF_5)

OUT_4 (OUT_
CONF_4)

111
(Default)

GP_OUT7 GP_OUT6 GP_OUT5 GP_OUT4

OUT_8, OUT_9, OUT_10, OUT_11: {8,9,10,11}

Bit Code
OUT_11 (OUT_
CONF_11)

OUT_10 (OUT_
CONF_10)

OUT_9 (OUT_
CONF_9)

OUT_8 (OUT_
CONF_8)

000
(Default)

PEG3_Pulse PEG2_Pulse PEG1_Pulse PEG0_Pulse

001 PEG0_State3 PEG0_State2 PEG0_State1 PEG0_State0

010 PEG1_State3 PEG1_State2 PEG1_State1 PEG1_State0

011 PEG2_State3 PEG2_State2 PEG2_State1 PEG2_State0

100 PEG3_State3 PEG3_State2 PEG3_State1 PEG3_State0

101 Reserved Reserved Reserved Reserved

110 Reserved Reserved Reserved Reserved

111 GP_OUT11 GP_OUT10 GP_OUT9 GP_OUT8

Comments

ASSIGNPOUTS is a blocking command in the sense that the ACSPL+ progam moves to the next line
or command only after this command has been fully executed or an error is generated.

Examples

The following examples illustrate using the ASSIGNPOUTS in order to use PEG outputs as GP outputs

Example 1:

ASSIGNPOUTS 0, 2, 0b111

This defines the Z_PEG output as FGP_OUT2 and maps it to the bit 18 of the ACSPL+ OUT variable
(see SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)).

If you run, for example:

OUT(x).18=0

Where x is the index assigned to the controller during System Configuration, FGP_OUT2 output will
be activated.

Then if you run:

282Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

OUT(x).18=0

FGP_OUT2 will be deactivated.

Example 2:

ASSIGNPOUTS 4, 7, 0b111

This defines the X_STATE2 output as FGP_OUT6 and maps it to the bit 22 of the ACSPL+ OUT variable
(see SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 1)).

A separate command should be set for every GP output.

Related ACSPL+ Commands

ASSIGNPEG, PEG_I, PEG_R, STARTPEG, STOPPEG

COM Library Methods

None

C Library Functions

acsc_AssignPegOutputsNT

General purpose outputs GP_OUT8, GP_OUT9, GP_OUT10 and GP_OUT11 should be used
by changing the general purpose outputs 16, 17, 18 and 19 in ACSPL+.
For example to set general output 16 run the following command:
OUT0.16 = 1

Comments

ASSIGNPOUTS is a blocking command in the sense that the ACSPL+ progam moves to the next line
or command only after this command has been fully executed or an error is generated.

Examples

The following examples illustrate using the ASSIGNPOUTS in order to use PEG outputs as GP outputs

Example 1:

ASSIGNPOUTS 0, 2, 0b111

This defines the Z_PEG output as FGP_OUT2 and maps it to the bit 18 of the ACSPL+ OUT variable
(see SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)).

If you run, for example:

283Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

OUT(x).18=0

Where x is the index assigned to the controller during System Configuration, FGP_OUT2 output will
be activated.

Then if you run:

OUT(x).18=0

FGP_OUT2 will be deactivated.

Example 2:

ASSIGNPOUTS 4, 7, 0b111

This defines the X_STATE2 output as FGP_OUT6 and maps it to the bit 22 of the ACSPL+ OUT variable
(see SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 1)).

A separate command should be set for every GP output.

Related ACSPL+ Commands

ASSIGNPEG, PEG_I, PEG_R, STARTPEG, STOPPEG

COM Library Methods

None

C Library Functions

acsc_AssignPegOutputsNT

8.2.1.3.4 STARTPEG

Description

The STARTPEG command initiates the PEG process on the specified axis. The command is used in
both the Incremental and Random PEG modes.

Syntax

STARTPEG axis

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the system
minus 1.

Comments

STARTPEG is a blocking command in the sense that the ACSPL+ progam moves to the next line or
command only after this command has been fully executed or an error is generated.

284Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

If "STOPPEG" below has been issued before the last PEG position, you have to use STARTPEG to
resume PEG engine firings from the current point.

Related ACSPL+ Commands

ASSIGNPEG, ASSIGNPOUTS, ASSIGNPOUTS, ASSIGNPOUTS, STOPPEG

Related ACSPL+ Variables

AST

COM Library Methods

None

C Library Functions

acsc_StartPegNT

8.2.1.3.5 STOPPEG

Description

The STOPPEG command terminates the PEG process immediately on the specified axis. The
command is used in both the Incremental and Random PEG modes.

Syntax

STOPPEG axis

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the system
minus 1.

Comments

STOPPEG is a blocking command in the sense that the ACSPL+ progam moves to the next line or
command only after this command has been fully executed or an error is generated.

Example

PEG_I/S 0, 0.003, 1000, 1000, 3000, 2, 0.01
PTP 0, 3000 !The program initiates synchronous PEG, with PTP

!motion on axis 0.
WAIT 2 !Two milliseconds after motion starts, PEG

!will be terminated by STOPPEG.
STOPPEG 0

Related ACSPL+ Commands

ASSIGNPEG, ASSIGNPOUTS, PEG_I, PEG_R, STARTPEG

COM Library Methods

None

C Library Functions

acsc_StopPegNT

285Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.2.1.3.6 PEG_I

Description

The PEG_I command is used for setting the parameters for the Incremental PEG mode.

Syntax

PEG_I [/awi] axis, width, first_point, interval, last_point

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

width Width of the Pulse.

first_
point

First point for the PEG generation.

interval The distance between PEG events.

last_point Last point for PEG generation.

time-
based-
pulses

Optional parameter - number of time-based pulses generated after each
encoder-based pulse, the range is from 0 to 65,535.

time-
based-
period

Optional parameter - period of time-based pulses (milliseconds), the range is
from 0.00005334 to 1.7476.

Time-based period must be at least pulse width + 26.6667 nsec (minimum
distance between two pulses).

PEG is generated only after the first pre-defined start point is reached. If the current
encoder position exceeds pre-defined start point no PEG pulses are fired. It is
recommended to activate the PEG engine before the maximum current position for
movement in the positive direction and the minimum current position for movement
in the negative direction.

Comments

> If the switch: /w is included, the execution of the command is delayed until the execution
of the STARTPEG command.

> If the switch: /i is included, the PEG pulse output signal is inverted.

> If the switch: /a is included, error accumulation is prevented by taking into account the
rounding of the distance between incremental PEG events.
You must use this switch if interval does not match the whole number of encoder counts.
Using this switch is recommended for any application that uses the PEG_I command,
regardless if interval matches the whole number of encoder counts.

286Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Example

In this example, PEG pulses are fired on axis 6 based on axis encoder 7.

GLOBAL AXIS6
GLOBAL AXIS7
AXIS6=6 ! Axis assignment
AXIS7=7

assignpeg AXIS6, 0b001, 0b0
! Refer to SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines
to Encoders (Servo Processor 1): last column indicates that Encoder 7 is
assigned to PEG6.
! 0b0 indicates that the digital outputs are at their default value
according
! to SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs
Assignment for Use as PEG Pulse Outputs (Servo Processor 1), thus not
used as PEG signals.

assignpouts AXIS6, 7, 0b010
! Axis6 being assigned. Output 7 is used. 0b010 indicates PEG6_PULSE is
being
! fired (from SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine
Outputs to Physical Outputs (Servo Processor 1)).

ST:
peg_i AXIS6,0.5,-100,-200,-10000
TILL AST(AXIS6).#PEGREADY
!Wait till command executes and configuration is set, in order to ensure
!proper PEG engine's execution prior to start of movement
ptp/e AXIS6,-12000
stoppeg AXIS6 ! Prevent PEG pulses' firing on the 'way back'
ptp/e AXIS6,0
goto ST

stop

Related ACSPL+ Commands

PEG_R, ASSIGNPEG, ASSIGNPOUTS, STARTPEG, STOPPEG

Related ACSPL+ Variables

AST

COM Library Methods

None

C Library Functions

acsc_PegIncNT, acsc_WaitPegReady

287Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.2.1.3.7 PEG_R

Description

The PEG_R command is used for setting the parameters for the Random PEG mode.

Syntax

PEG_R[/wid] axis, width, mode, first_index, last_index, POS_ARRAY, STATE_ARRAY

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in

the system minus 1.

width Width of the Pulse.

mode

PEG state output signals configuration according to PEG Output Signal
Configuration.

Bits 0-3 relates the PEG State 0 of the specific PEG engine

Bits 4-7 relates the PEG State 1 of the specific PEG engine

Bits 8-11 relates the PEG State 2 of the specific PEG engine

Bits 12-15 relates the PEG State 3 of the specific PEG engine

The most commonly used value is 0x4444 - PEG State Outputs 0-3 are
configured with the ‘State” option (bits 2, 6, 10, 14 are ON).

first_
index

Index of first entry in the array for PEG generation

last_
index

Index of last entry in the array for PEG generation

POS_
ARRAY

The Random Event Positions array, maximum of 256/1024 members

STATE_
ARRAY

The Outputs States array defining the four PEG output states, maximum of
256/1024 members

time-
based-
pulses

Optional parameter - number of time-based pulses generated after each
encoder-based pulse, the range is from 0 to 65,535.

time-
based-
period

Optional parameter - period of time-based pulses (milliseconds), the range is
from 0.00005334 to 1.7476.

Time-based period must be at least pulse width + 26.6667 nsec (minimum
distance between two pulses).

288Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-26. PEG Output Signal Configuration

PEG Output Signal Configuration

Bit Signal Description Default Value

0 Pulse polarity
0- Output-0 positive pulse

1- Output-0 negative pulse
‘0’

1 State polarity
0- Output-0 positive state

1- Output-0 negative state
‘0’

2-3 Output type

00- Output-0 three state

01- Output-0 State

10- Output-0 Pulse

11- Output-0 Pulse&State

‘00’

4 Pulse polarity
0- Output-1 positive pulse

1- Output-1 negative pulse
‘0’

5 State polarity
0- Output-1 positive state

1- Output-1 negative state
‘0’

7-6 Output type

00- Output-1 three state

01- Output-1 State

10- Output-1 Pulse

11- Output-1 Pulse&State

‘00’

8 Pulse polarity
0- Output-2 positive pulse

1- Output-2 negative pulse
‘0’

9 State polarity
0- Output-2 positive state

1- Output-2 negative state
‘0’

11-10 Output type

00- Output-2 three state

01- Output-2 State

10- Output-2 Pulse

11- Output-2 Pulse&State

‘00’

12 Pulse polarity
0- Output-3 positive pulse

1- Output-3 negative pulse
‘0’

289Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

PEG Output Signal Configuration

Bit Signal Description Default Value

13 State polarity
0- Output-3 positive state

1- Output-3 negative state
‘0’

15-14 Output type

00- Output-3 three state

01- Output-3 State

10- Output-3 Pulse

11- Output-3 Pulse&State

“00”

PEG state output types:

“Three state” - PEG state output is not in use

“State” - PEG state output will be changed according to the STATE_ARRAY values

“Pulse” - PEG state output will be changed according to PEG pulse value

“Pulse & State” - PEG state output will be changed according to the result of AND operation
between STATE_ARRAY values AND PEG pulse value

Pulse Polarity:

If positive or negative pulse is used as PEG pulse value for the specific “PEG State Output”

State Polarity:

If positive or negative state is used as PEG pulse value for the specific “PEG State Output”

Comments

> If the switch /w is included, the execution of the command is delayed until the execution
of the STARTPEG command.

> If the switch /i is included, the PEG pulse output signal is inverted.

> If the switch /d is included, dynamic loading of positions is included

> The parameters that can be set by the command differ from those that could be set for
SPiiPlusCM/SPiiPlusSA/SPiiPlus3U controllers with the addition of the new first_index and
last_index parameters.

> When the PEG pulse is activated, the voltage between the two differential PEG outputs (+)
and (-) drops to -5V. When the PEG pulse is de-activated, the voltage between the two
differential PEG outputs is 5V.

> In PEG_R, the number of position-based pulses is limited to eight pulses per controller
cycle and the minimum time interval must be >200nsec.

> When using a Sin-Cos encoder, PEG is triggered at the zero crossing of the sine-cosine
waves and not at the precise interpolated position.

> The last three arguments are optional. If STATE_ARRAY is omitted, the controller
generates the PEG pulses at each position but does not change the state of any output. If

290Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

time-based-pulses and time-based-period are omitted, the controller does not generate
time based pulses.

> The dynamic loading feature is limited by the loading frequency. If a high loading
frequency is required, the loading capacity may not suffice to keep the FIFO loaded.

> Dynamic loading can only be implemented on a PEG engine with fast loading (ASSIGNPEG
/f)

> If the FIFO is emptied before all data arrays have been loaded, a memory overflow fault
will be thrown.

Loading Frequency Table

CTIME (ms) Frequency (Hz)

1 200

0.5 400

0.25 800

0.2 1000

Example

In this example PEG pulses are fired on axes 0, 1, and 2 according to encoder of axis 0.

GLOBAL AXIS0
GLOBAL AXIS1
GLOBAL AXIS2

GLOBAL REAL ARR(16) !Definition of a 16 point position array
ARR(0)=100;ARR(1)=150;ARR(2)= 200;ARR(3)=250;
ARR(4)=300;ARR(5)=350;ARR(6)=400;ARR(7)= 450;
ARR(8)=500;ARR(9)=550;ARR(10)= 600;ARR(11)=650;
ARR(12)=700;ARR(13)=750;ARR(14)=800;ARR(15)=1000;

AXIS0=0
AXIS1=1
AXIS2=2

assignpeg AXIS0, 0b100, 0b0

assignpouts AXIS0, 0, 0b000 !Assign bit code 000 from SAnt-x Mapping of
Engine outputs to AXIS0,

 !at Pin0
assignpouts AXIS1, 1, 0b000
assignpouts AXIS2, 2, 0b001

ST:
peg_r AXIS0,0.5,0x4444,0,15,ARR,STAT !Activate random PEG for axis 0
peg_r AXIS1,0.5,0x4444,0,15,ARR,STAT

291Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

peg_r AXIS2,0.5,0x4444,0,15,ARR,STAT

!Wait till command executes and configuration is set, in order to
!ensure proper PEG engine's execution prior to start of movement
TILL AST(AXIS0).#PEGREADY
TILL AST(AXIS1).#PEGREADY
TILL AST(AXIS2).#PEGREADY

ptp/e AXIS0,5000
stoppeg AXIS0 ! Prevent PEG pulses' firing on the 'way back'
ptp/e AXIS0,0

goto ST
stop

This example shows the setup for dynamic PEG loading and a PTP motion command.

GLOBAL REAL ARR(3000)
GLOBAL INT STAT(3000)

INT AXIS = 0
! Initialize PEG Arrays
!........
!........

! Assign encoders to PEG engines
ASSIGNPEG/f AXIS, 0b000, 0b0000
ENABLE (AXIS)
PEG_R/d (AXIS), 0.1, 0, 0, 3000, ARR, STAT
TILL AST(AXIS).#PEGREADY

PTP/e (AXIS), 15000
STOPPEG AXIS

STOP

Related ACSPL+ Commands

PEG_I, ASSIGNPEG, ASSIGNPOUTS, STARTPEG, STOPPEG

Related ACSPL+ Variables

AST

COM Library Methods

None

C Library Functions

acsc_PegRandomNT, acsc_WaitPegReady

292Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.2.1.3.8 ASSIGNMARK

Description

The ASSIGNMARK function is used for Mark inputs-to-encoder assignment. It allows mapping
available physical Mark inputs pins to different encoders.

Syntax

ASSIGNMARK [/i] axis, mark_type, inputs_to_encoder_bit_code

Arguments

Axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

mark_type
1 for Mark-1

2 for Mark-2

inputs_to_
encoder_
bit_code

Bit code for inputs-to-encoders mapping according to

Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus
SAnt-x

Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus
SAnt-x

Mark-1 and Mark-2 Inputs to Encoders Mapping for with SPiiPlus CMnt-
x/UDMpm-x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-
x/UDMhv-x

Comments

If the switch: /i is included, the MARK input signal is inverted.

Mark Inputs to Encoders Mapping

Table 8-27. Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x

Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x

Bit
code

Enco
der 0
(X)

Enco
der 1
(Y)

Enco
der 4
(Z)

Enco
der 5
(T)

Enco
der 2
(A)

Enco
der 3
(B)

Enco
der 6
(C)

Enco
der 7
(D)

0000
0

(defa
ult)

0(X) 1(Y) 4(Z) 5(T) - - - -

0000
1

1(Y) 4(Z) 5(T) 0(X) - - - -

293Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x

Bit
code

Enco
der 0
(X)

Enco
der 1
(Y)

Enco
der 4
(Z)

Enco
der 5
(T)

Enco
der 2
(A)

Enco
der 3
(B)

Enco
der 6
(C)

Enco
der 7
(D)

0001
0

4(Z) 5(T) 0(X) 1(Y) - - - -

00011 5(T) 0(X) 1(Y) 4(Z) - - - -

0010
0

- 1(Y) 4(Z) 5(T) 0(X) - - -

00101 0(X) - 4(Z) 5(T) - 1(Y) - -

00110 0(X) 1(Y) - 5(T) - - 4(Z) -

00111 0(X) 1(Y) 4(Z) - - - - 5(T)

0100
0

- - 4(Z) 5(T) 0(X) 1(Y) - -

01001 0(X) 1(Y) - - - - 4(Z) 5(T)

01010 0(X) - - - - 1(Y) 4(Z) 5(T)

01011 - 1(Y) - - 0(X) - 4(Z) 5(T)

01100 - - 4(Z) - 0(X) 1(Y) - 5(T)

01101 - - - 5(T) 0(X) 1(Y) 4(Z) -

01110 - - - - 0(X) 1(Y) 4(Z) 5(T)

01111 - - - - 1(Y) 4(Z) 5(T) 0(X)

1000
0

- - - - 4(Z) 5(T) 0(X) 1(Y)

10001 - - - - 5(T) 0(X) 1(Y) 4(Z)

The Bit Code affects all of the inputs in the row, see Bit code affects.

294Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-28. Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x

Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x

Bit
code

Enco
der 0
(X)

Enco
der 1
(Y)

Enco
der 4
(Z)

Enco
der 5
(T)

Enco
der 2
(A)

Enco
der 3
(B)

Enco
der 6
(C)

Enco
der 7
(D)

0000
0

(defa
ult)

GP
IN6

GP
IN7

GP
IN4

GP
IN5

- - - -

0000
1

GP
IN7

GP
IN4

GP
IN5

GP
IN6

- - - -

0001
0

GP
IN4

GP
IN5

GP
IN6

GP
IN7

- - - -

00011
GP
IN5

GP
IN6

GP
IN7

GP
IN4

- - - -

0010
0

-
GP
IN7

GP
IN4

GP
IN5

GP
IN6

- - -

00101
GP
IN6

-
GP
IN4

GP
IN5

-
GP
IN7

- -

00110
GP
IN6

GP
IN7

-
GP
IN5

- -
GP
IN4

-

00111
GP
IN6

GP
IN7

GP
IN4

- - - -
GP
IN5

0100
0

- -
GP
IN4

GP
IN5

GP
IN6

GP
IN7

- -

01001
GP
IN6

GP
IN7

- - - -
GP
IN4

GP
IN5

01010
GP
IN6

- - - -
GP
IN7

GP
IN4

GP
IN5

01011 -
GP
IN7

- -
GP
IN6

-
GP
IN4

GP
IN5

01100 - -
GP
IN4

-
GP
IN6

GP
IN7

-
GP
IN5

295Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x

Bit
code

Enco
der 0
(X)

Enco
der 1
(Y)

Enco
der 4
(Z)

Enco
der 5
(T)

Enco
der 2
(A)

Enco
der 3
(B)

Enco
der 6
(C)

Enco
der 7
(D)

01101 - - -
GP
IN5

GP
IN6

GP
IN7

GP
IN4

-

01110 - - - -
GP
IN6

GP
IN7

GP
IN4

GP
IN5

01111 - - - -
GP
IN7

GP
IN4

GP
IN5

GP
IN6

1000
0

- - - -
GP
IN4

GP
IN5

GP
IN6

GP
IN7

10001 - - - -
GP
IN5

GP
IN6

GP
IN7

GP
IN4

Bit code affects

The Bit code affects all of the inputs in the row. For example, Bit code: 00010 performs the
following assignments for these inputs:

> Mark-1 4(Z) - Encoder 0(X)

> Mark-1 5(T) - Encoder 1(Y)

> Mark-1 0(X) - Encoder 4(Z)

> Mark-1 1(Y) - Encoder 5(T)

Table 8-29. Mark-1 and Mark-2 Inputs to Encoders Mapping for with SPiiPlus CMnt-x/UDMpm-
x/UDMpc-x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-x/UDMhv-x

Mark-1 and Mark-2 Inputs to Encoders Mapping for with SPiiPlus CMnt-x/UDMpm-x/UDMpc-
x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-x/UDMhv-x

Bit
code

Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

Mar
k-1
Input

Mar
k-2
Input

Mar
k-1
Input

Mar
k-2
Input

Mar
k-1
Input

Mar
k-2
Input

Mar
k-1
Input

Mar
k-2
Input

000
(deaful
t)

Mar
k-1 0
(X)

Mar
k-2 0
(X)

Mar
k-1 1
(Y)

Mar
k-2 1
(Y)

Mar
k-1 0
(X)

GP
IN6

Mar
k-1 1
(Y)

GP
IN7

296Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Mark-1 and Mark-2 Inputs to Encoders Mapping for with SPiiPlus CMnt-x/UDMpm-x/UDMpc-
x/CMba-x/CMhp-x/UDMba-x/UDMhp-x/CMhv-x/UDMhv-x

Bit
code

Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

Mar
k-1
Input

Mar
k-2
Input

Mar
k-1
Input

Mar
k-2
Input

Mar
k-1
Input

Mar
k-2
Input

Mar
k-1
Input

Mar
k-2
Input

001
GP
IN6

Mar
k-1 1
(Y)

Mar
k-1 0
(X)

Mar
k-1 1
(Y)

Mar
k-2 0
(X)

Mar
k-1 1
(Y)

Mar
k-1 0
(X)

Mar
k-1 1
(Y)

010 -
Mar
k-2 1
(Y)

GP
IN4

GP
IN5

GP
IN6

Mar
k-2 1
(Y)

GP
IN6

-

011 -
GP
IN7

GP
IN6

GP
IN7

-
GP
IN7

- -

8.2.1.4 ACSPL Plus Functions and Definitions

This section covers changes that have been incorporated in the ACSPL+ function set to accomodate
PEG operations in NT.

8.2.1.4.1 GETCONF

Description

GETCONF retrieves system configuration data.

Syntax

GETCONF(key,index)

Arguments

key Specifies the configured feature.

index A 16-bit word used for specifying the axis and output

The following describes the new keys that have been incorporated.

GETCONF(71, index)

Description

GETCONF(71, index) is used to view the actual assignment of digital outputs to PEG states and PEG
pulses outputs.

Arguments

The index argument contains the axis index, valid numbers are: 0, 1, 2, ... up to the number of axes
in the system minus 1.

297Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Return value

Depending on the axis, the function returns the bit code according to

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment for Use as PEG
Pulse Outputs (Servo Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x General Purpose Outputs Assignment for Use as PEG
Pulse Outputs (Servo Processor 1)

SPiiPlus CMnt-x/UDMpm-x/CMhv-x/UDMhv-x General Purpose Outputs Assignment for Use as PEG
Pulse Outputs (Servo Processor 0)

UDMnt-x/UDMpa-x/UDMcb-x General Purpose Outputs Assignment for Use as PEG Pulse Outputs
(Servo Processor 0)

GETCONF(72, index)

Description

GETCONF(72, index) is used to view the actual encoder PEG engine assignment.

Arguments

The index argument contains the axis index, valid numbers are: 0, 1, 2, ... up to the number of axes
in the system minus 1.

Return value

Depending on the axis, the function returns the bit code according to

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders (Servo Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping PEG Engines to Encoders (Servo Processor 1)

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

UDMlc-x/UDIlt-x/UDIhp-x/UDMmc-x/PDIcl-x/ Mapping PEG Engines to Encoders (Servo Processor 0)

GETCONF(73, index)

Description

GETCONF(73, index) is used to view the actual output pins assignment.

Arguments

The index argument has to following meaning:

> Bits 0 - 7 - Axis Index

> Bits 8 - 16 - 0 for OUT_0, 1 for OUT_1, ..., 9 for OUT_9

Return value

Depending on the axis, the function returns the bit code according to

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

SPiiPlusNT/DC-LT/HP/LD-x/SPiiPlus SAnt-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 1)

298Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

CMnt-x/UDMpm-x/UDMpc-x/CMhv-x/UDMhv-x Mapping of Engine Outputs to Physical Outputs
(Servo Processor 0)

CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

CMba-x/CMhp-x/UDMba-x/UDMhp-x Mapping of Engine Outputs to Physical Outputs (Servo
Processor 0)

UDMnt-x/UDMpa-x/UDMcb-x Mapping of Engine Outputs to Physical Outputs (Servo Processor 0)

8.2.1.4.2 AST.#PEGREADY

Description

AST is an integer array containing a set of bits used for displaying the current axis state. Bit 4
(#PEGREADY) has been added to indicate the readiness of a PEG engine.

Syntax

AST(AXIS#).#PEGREADY

AXIS# identifies the axis and can take on values of AXIS0 through AXIS_Last, where _Last is the
number of axes in the system minus 1.

Return value

> 0 - Indicates that the engine is not configured and motion should not be started.(default)

> 1 - Indicates that all values are loaded and the PEG engine is ready to respond to
movement (the user can start a motion).

Comments

The #PEGREADY bit is reset to ‘0’ when PEG is activated.

8.3 Sin-Cos Encoder Multiplier Configuration

The sin-cos encoders are encoders with analog outputs.

For convenient modification of encoder related variables, use the SPiiPlus MMI Application Studio:
Toolbox g Setup gSystem and Faults Configurator, see SPiiPlus MMI Application Studio User Guide
for details..

8.3.1 Sin-Cos Encoder Multiplier

The sin-cos encoder multiplier provides a combination of high speed and high resolution that
cannot be achieved with an external encoder multiplier producing a digital quadrature signal.

Sin-cos encoder multiplier is an optional feature. You need to specify the number of sin-cos
encoder multipliers when you order the controller.

8.3.1.1 Technical Data

> Maximum multiplication factor: 65536 counts per encoder sine signal period.

> Maximum velocity: 42*109 counts/sec or 641*103 sine periods/sec.

> Maximum acceleration: 65536*108 counts/sec2 or 108 sine periods/sec2.

299Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

> The encoder-related controller features: index, Mark, and PEG, do not support the full
resolution of the multiplier. Resolution for these features is limited to 4 counts per
encoder sine signal period.

8.3.1.2 Configuring the Sin-Cos Multiplier

You specify the sin-cos encoder multiplier as a feedback source using the ACSPL+ E_TYPE variable
(see SPiiPlus Command & Variable Reference Guide). The variable is an array sized according to the
number of axes. If an element in E_TYPE is set to 4, the corresponding axis will use the sin-cos
encoder multiplier as a feedback source. You can select any axis to use the sin-cos encoder
multiplier, but the total number of multipliers is limited to the number ordered with the controller
(the allowed number is hardwired in the PAL). If you try to select more multipliers than allowed, the
controller issues error 1148.

The ACSPL+ variable E_SCMUL (see SPiiPlus Command & Variable Reference Guide) specifies the
desired value of multiplication as a power of 2. The maximum value of 16 corresponds to a
multiplication of 65536 = 216. The minimum value of 2 corresponds to a multiplication of 4 = 22.

An axis that uses the sin-cos encoder multiplier is not different from any other axis in the
controller. Any motion can involve the multiplier axis. The multiplier and non-multiplier axes can be
used simultaneously in one multi-axis motion.

The following example shows how the encoder multiplier affects the EFAC (see User-Defined
Units) calculation:

Assume the encoder has 250 lines per mm and you assign E_SCMUL the value 10, which provides
multiplication x1024 (i.e., 210). The desired programming unit is millimeter. In this case you have to
specify EFAC as:

1/(250*1024) = 0.00000390625

Encoder-related features: index, Mark, PEG use the same user unit. However, actual resolution of
these functions is lower than the resolution of encoder feedback. As mentioned above, the
resolution of index, mark and PEG corresponds to 4 counts per encoder sine period. In the former
example the resolution will be 1/(250*4) = 0.001mm.

The controller continuously checks the integrity of the encoder multiplier feedback. If any error
occurs, the controller activates the Encoder Error fault.

8.4 Interrupts

Typically, you work with the SPiiPlus interrupts using the SPiiPlus C Library and do not need the low-
level details specified in this section. Refer to the SPiiPlus C Library Reference document for
explanation of the interrupt managing functions.

8.4.1 Hardware Interrupts

The hardware interrupt status registers contain the following bits:

Bit Description

3 PEG 0

4 PEG 1

300Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Description

5 PEG 3

6 PEG 4

7 MARK 1 0

8 M2ARK 0

9 MARK 1 2

10 M2ARK 2

11 MARK 1 3

12 M2ARK 3

13 MARK 1 4

14 M2ARK 4

15 Emergency Stop

8.4.2 Software Interrupts

The software interrupt status register contains the following bits:

Bit Description

16 Physical motion end

17 Logical motion end

18 Motion failure (Motion interruption due to a fault)

19 Motor failure (Motor disable due to a fault)

20 Program termination

21 ACSPL+ interrupt with user parameter (by INTERRUPTEX command)

22 ACSPL+ interrupt (by INTERRUPT command)

23 Digital input

27 New motion segment is required to be provided by the application

28 System error (the controller raises this interrupt if system error occurred)

301Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Description

29 EtherCAT error (the controller raises this interrupt if EtherCAT error occurred)

30
Controller cycle (the controller raises this interrupt in the beginning of each controller
cycle)

31
Communication interrupt (the controller raises this interrupt after sending a complete
message to the FIFO)

When a software interrupt occurs, the corresponding tag contains detailed information about the
interrupt source. For example, the tag of the Physical Motion End interrupt specifies the axes that
caused the interrupt. When a specific software interrupt has occurred, the next interrupt of the
same type can be generated only after the host drive reads both interrupt status register and
writes zero to the corresponding tag.

8.4.3 Software Interrupt Tags

The following tags are available:

Bit Description

16
Details of Physical motion end interrupt.

Bit 0 specifies that axis 0 has finished, bit 1 - axis 1, and so on.

17
Details of Logical motion end interrupt.

Bit 0 specifies that axis 0 has finished, bit 1 - axis 1, and so on.

18
Details of Motion failure interrupt.

Bit 0 specifies that axis 0 has failed, bit 1 - axis 1, and so on.

19
Details of Motor failure interrupt.

Bit 0 specifies that axis 0 has failed, bit 1 - axis 1, and so on.

20
Details of Program termination interrupt.

Bit 0 specifies that buffer 0 has finished, bit 1 - buffer 1, and so on.

21
Details of ACSPL+ interrupt with user parameter (by INTERRUPTEX command).

Bits 0..63 specify the user parameter.

22
Details of ACSPL+ interrupt (by INTERRUPT command).

Bit 0 specifies interrupts from buffer 0, bit 1 - buffer 1, and so on.

23
Details of Digital input interrupt.

Bit 0 specifies interrupts from input 0, bit 1 - input 1, and so on.

302Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Description

27

Details of new motion segment interrupt.

Bit 0 specifies that a new motion segment must be provided by the application for
axis 0, bit 1 - axis 1, and so on.

28
Details of system error interrupt.

Bits 0..63 specify the error that occurred.

29
Details of EtherCAT error interrupt.

Bits 0..63 specify the error that occurred.

8.4.4 Interrupt ConfigurationVariables

The following ACSPL+ variables enable/disable interrupts from a specific source:

> IENA - Scalar variable that enables/disables all interrupts that belong to a specific interrupt
status bit.

> ISENA - Array that enables/disables interrupts within a specific interrupt status bit. Each
elements corresponds to one interrupt status bit and specifies which axes or buffers or
inputs are enabled to cause interrupt.

8.4.4.1 IENA Variable

The IENA variable contains the following bits:

Bit Description

3 Enable PEG axis 0 interrupt

4 Enable PEG axis 0 interrupt

5 Enable PEG axis 2 interrupt

6 Enable PEG axis 2 interrupt

7 Enable MARK 1axis 0 interrupt

8 Enable M2ARKaxis 0 interrupt

9 Enable MARK 1 axis 1 interrupt

10 Enable M2ARK axis 1 interrupt

11 Enable MARK 1 axis 2 interrupt

12 Enable M2ARK axis 2 interrupt

303Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Description

13 Enable MARK 1 axis 3 interrupt

14 Enable M2ARK axis 3 interrupt

15 Enable Emergency Stop interrupt

16 Enable Physical motion end interrupt

17 Enable Logical motion end interrupt

18 Enable Motion failure (Motion interruption due to a fault) interrupt

19 Enable Motor failure (Motor disable due to a fault) interrupt

20 Enable Program termination interrupt

21 Enable ACSPL+ interrupt with user parameter (by INTERRUPTEX command)

22 Enable ACSPL+ interrupt (by INTERRUPT command)

27 Enable new motion segment interrupt

28 Enable system error interrupt

29 Enable EtherCAT error interrupt

8.4.4.2 ISENA Variable

The ISENA variable is an array containing the following elements:

Bit Description

16
Controls Physical motion end interrupt.

Bit 0 enables interrupts from axis 0, bit 1 - axis 1, and so on.

17
Controls Logical motion end interrupt.

Bit 0 enables interrupts from axis 0, bit 1 - axis 1, and so on.

18
Controls Motion failure interrupt.

Bit 0 enables interrupts from axis 0, bit 1 - axis 1, and so on.

19
Controls Motor failure interrupt.

Bit 0 enables interrupts from axis 0, bit 1 - axis 1, and so on.

304Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Description

20
Controls Program termination interrupt.

Bit 0 enables interrupts from buffer 0, bit 1 - buffer 1, and so on.

22
Controls ACSPL+ interrupt (by INTERRUPT command).

Bit 0 enables interrupts from Buffer 0, bit 1 - buffer 1, and so on.

23
Controls Digital input interrupt.

Bit 0 enables interrupts from input 0, bit 1 - input 1, and so on.

27

Controls new motion segment interrupt.

Bit 0 enables interrupt that new motion segment is required to be provided by the
application for axis 0, bit 1 – for axis 1, and so on.

8.5 Dynamic Braking

The dynamic brake reduces the motor runoff if the motor becomes disabled during motion. In
dynamic braking the controller short-circuits the motor armature.

If dynamic braking is enabled for an axis, the controller applies the braking when the feedback
velocity falls below the value specified by the VELBRK parameter (default - 0).

The MFLAGS.#DBRAKE bit enables dynamic braking (default - off).

8.6 Constant Current Mode

The Constant Current mode provides extra safety. When the mode is activated, and the emergency
stop signal is on, the motor is kept at a standstill by the drive.

> The function, SETCONF (133, 1, 1) enables constant current mode for axis 1. The function,
SETCONF (133, 1, 0) disables constant current mode for axis 1.

> To retrieve the Constant Current mode status for axis 1, GETCONF (133, 1) is used. It retrieves
a non-zero value if Constant Current mode is on and zero if Constant Current mode is off.

The drive activates constant current mode only if all of the following conditions are true:

> Emergency Stop (ES) signal is on.

> All axes are disabled.

> Dynamic brake mode is off (MFLAGS(AXIS).#DBRAKE = 0).

Only once these conditions are true can the constant current mode be enabled by the function
SETCONF (133, 1, 1). If any of the conditions is changed, it will deactivate the constant current mode.

To set/get the current level used for constant current mode, the following SETCONF/GETCONF
parameters are used:

> SETCONF (130, {1|5}, current level), where current level defines that the constant current
level as a percentage of the maximum current for the specified axis (1 or 5 only). The
default maximum value that can be set is 16% for axis 1 and 30% for axis 5 (this value can be
changed, see description of key 131 below).

305Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

> GETCONF (130, {1|5}) retrieves the present value of current level for the specified axis.

The default value of current level is 0, so it must be defined before constant current mode can be
used.

To set/get the maximum value that can be set with SETCONF (130, . . .), the following
SETCONF/GETCONF parameters are used:

> SETCONF (131, {1|5}, max_current_level), where MAX_CURRENT_LEVEL defines the
maximum allowable value of the current level as a percentage of the maximum current for
the specified axis (1 or 5 only).

> GETCONF (131, {1|5}) retrieves the present maximum allowable current level for the
specified axis.

The following ACSPL+ program illustrates how to implement constant current mode:

! Constant current mode implementation
on S_FAULT.#ES
disableall
wait 100
MFLAGS(1).#DBRAKE = 0; MFLAGS(5).#DBRAKE = 0 !Disable Brake Mode for axes
1, 5
setconf(130, 1, 10) ! set constant current level (10%) for axis 1
setconf(130, 5, 20) ! set constant current level (20%) for axis 5
setconf(133, 1, 1) ! enable constant current mode
ret
on ^S_FAULT.#ES | S_FAULT.#DRIVE
setconf(133, 1, 0) ! disable constant current mode
ret

8.7 Hall Sensor Commutation

> Hall sensor commutation requires a first time adjustment from the commutation dialog in
the SPiiPlus MMI Application Studio Adjuster wizard (see SPiiPlus MMI Application Studio
User Guide for details).

> In subsequent power-ups, the motor will start moving according to the Hall sensors until it
encounters the first change in the Hall sensors. At this point, commutation will switch to
full sinusoidal commutation.

> The quality of commutation relies on the physical alignment of the Hall sensors relative to
the magnetic field of the motor, and in most cases is done very accurately by the motor
manufacturers. Using this method, factors like high friction, vertical load, etc. have no
effect on the commutation quality.

> The connection sequence of the three Hall sensors is not important. Simply verify that the
three sensors are connected, and that the Hall counter counts 0,1,2,3,4,5. It does not
matter if the Hall counters count is opposite of the encoder. This situation is identified and
dealt with during the initial adjustment.

The variables and functions for supporting Hall operations are:

Table 8-30. Variables and Functions for Hall Support

306Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Variable/Function Description

SLCHALL
Holds the Hall shift. The Adjuster Wizard commutation program
calculates this parameter and saves it. Do not change this parameter
manually.

MFLAGS.27 If this bit = 1, commutation will be based on the Hall sensors.

MFLAGS.28

Hall direction inversion. The Adjuster Wizard commutation program
calculates this parameter and saves it. Do not change this parameter
manually.

1 = Controller inverts Hall direction.

GETCONF(110,
Index)

Returns the Hall counter of the axis specified by Index. The Hall
direction bit is not taken into account. This function is used by the
Adjuster commutation program.

GETCONF(111,
Index)

This function is used by the Adjuster Wizard during commutation.

GETCONF(262,
Index)

Returns the current Hall state, which can be 0, 1, 2, 3, 4, or 5, of the axis
given by Index (a number: 0, 1, 2, ... up to the number of axes in the
system minus 1). It returns -1 for invalid states

After hardware reset, if the Hall commutation was successful, the firmware
automatically sets bit MFLAGS.9 = 1, if MFLAGS.27 = 1.
For proper Hall commutation, the encoder resolution and number of poles should be
defined correctly. The current loop should be adjusted.

8.8 Communicating with the SPiiPlus C Library

This section provides an overview of the SPiiPlus C Library communication channels.

8.8.1 Remote Connection

The C Library installed on a specific computer supports not only applications running on the same
computer, but also applications on remote computers. The only requirement is for a TCP/IP
connection between the computers.

This illustrates the simultaneous connection of two local and one remote applications.

307Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-2. Simultaneous Connection for Remote Support

8.8.2 Callbacks in all Communication Channels

The Callback mechanism provides the fastest response to the controller events. The
implementation is transparent for user applications. In all communication channels, the callback API
consists of the functions, SetCallback and SetCallbackExt.

8.8.2.1 Timing

Callback operations include sending/receiving a message that requires much more time. Specific
rates depend on the communication channel rate.

From the viewpoint of callback mechanism, all communication channels are functionally equivalent,
but differ in timing.

8.8.2.2 Software Interrupts

The following interrupts are generated by the controller firmware and therefore are called
software interrupts:

> Physical motion end

> Logical motion end

> Motion failure (Motion interruption due to a fault)

> Motor failure (Motor disable due to a fault)

> Program termination

> Command execution

> ACSPL+ interrupt (by INTERRUPT command)

308Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

> Digital input

> Logical motion start

> Motion phase change

> Trigger

8.8.2.3 Hardware Interrupts

The following interrupts are generated by the controller hardware and therefore are called
hardware interrupts:

> Emergency stop

> Mark 1 (axes 0, 1, 2, 3)

> Mark 2 (axes 0, 1, 2, 3)

> PEG (axes 0, 1, 2, 3)

The hardware interrupt callback conditions in different communication channels are:

Table 8-31. Hardware Interrupt Callback Conditions

Callback Condition of Alert Message

Emergency
stop

The message is sent when bit S_FAULT.#ES changes from zero to one.

The message is disabled if S_FMASK.#ES is zero.

Mark 1 and
Mark 2

The message is sent when corresponding IST.#MARK or IST.#MARK2 bit
changes from zero to one.

PEG
The message is sent when the corresponding AST.#PEG bit changes from
one to zero.

8.8.3 TCP/IP Port Assignment for Remote Connection

The C Library installed on a specific computer supports not only applications running on the same
computer, but also applications on remote computers. The only requirement is for a TCP/IP
connection between the computers.

8.8.3.1 TCP/IP Port Assignmnet

For a description of all the UMD functions see SPiiPlus Utilities User Guide.

To establish a remote connection using TCP/IP, select Enable Access from Remote Application on
the User Mode Driver (UMD) Remote Connection tab.

If the default port is not busy, no communication error messages are encountered, and no problem
is anticipated. In this case, use the function acsc_SetServerExt with the ACSC_DEFAULT_REMOTE_
PORT parameter to set the remote port address from the user application.

If the default port (9999) is busy, the UMD will return the following error message:

309Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Requested port 9999 is in use by another application. Select another port in the Remote
Connection tab.

In this case, proceed as follows:

1. From the Remote Connection tab, select Change from the Remote Port Connection list.

2. Enter the remote port address in the Enter valid port number dialog.

3. From the Remote Connection tab, select Enable Access from Remote Application. As
soon as the check box is selected, communication with the remote port is attempted. If
communication does not succeed, the following error message appears:

Requested port [port number] is in use by another application. Select another port in the
Remote Connection tab.

4. Repeat Steps 1-3 until communications are established. When communications are
successfully established, the UMD stores the settings.

5. Click OK and then Close.

6. In the user application, use the function acsc_SetServerExt and specify the same port
number that was entered in the UMD GUI.

Every time the User Mode Driver (UMD) initializes, the availability of the specified port is
checked. If the system configuration or port number have changed, the UMD
generates an error message and the Enable Access from Remote Application on the
UMD Remote Connection tab check box will be cleared.

8.8.3.2 Disabling Remote UMD Connections

After installation, the remote connection is disabled.

To enable the remote connection, select Enable Access from Remote Application on the UMD
Remote Connection tab. The remote application can now connect to the UMD, until it is disabled.

Disable the remote connection as follows:

1. Clear Enable Access from Remote Application on the UMD Remote Connection tab.

2. Restart the UMD for the changes to take effect.

8.8.3.3 UMD Log Types

The UMD logs constantly at run-time. The data is stored in binary format in an internal cyclic buffer
and is translated to text just before it is written to file.

You may choose one of two mutually exclusive log types:

> Dump on Request – all the binary data that is stored in the internal binary buffer and is
flushed by explicit request to the file, see acsc_FlushLogFile.

> Continuous – this is a background thread that takes care of periodic file updates. It reads
the binary buffer and performs text formatting to the file.

Perform the Dump on Request as follows:

1. From the UMB Log Settings tab, select Dump on request as the Log File Mode.

310Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

2. Select the Log file path

Refer to the screen shot and note that Dump button appears and that Maximum logging time is
disabled.

Figure 8-3. UMD Log Settings - Dump on Request

Perform a Continuous Log File as follows:

1. From the UMD Log Settings tab, select Continuous as the Log File Mode.

2. Select the Log file path.
Refer to the screen shot below and note that the Start Log button appears and that
Maximum logging time is enabled.

3. Set Maximum logging time. Possibilities range from one hour to One week.

The Infinite setting is not recommended because of a possible disk overflow situation.

4. Click Start Log.

311Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-4. UMD Log Settings - Continuous

5. After clicking Start Log, and the log is active, and the Stop Log button appears.

8.8.3.4 Unloading the UMD from Memory

Unload the UMD from memory as follows:

1. Right click the UMD icon in the status area

2. Click Unload.

3. Click OK on the confirmation message. The UMD is then unloaded from the memory.

8.9 Communicating with Non-ACS Devices

Another use of the SETCONF and GETCONF functions (see SPiiPlus Command & Variable Reference
Guide) relates to external communication channels. The functions are used to facilitate the
following tasks:

> Connection to user panel (teach pendant, console) that make use of special
communication protocols (Modbus, etc.)

> Connection to devices with special interfaces (laser interferometer, intelligent drives, etc.)

Currently only serial channels can be connected to devices such as these. All functions
described below are implemented for RS232 serial channels only.

8.9.1 Channel ConfigurationReport

The #CC terminal command reports the current configuration of communication channels.

312Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The controller responds with a table that specifies the configuration for each supported
communication channel.

For any specific hardware configuration, not all listed channels may be physically
available.

The following example illustrates the report:

#CC
Channel Type Commandant
1 Serial Command Rate:115200
2 Serial Special Rate:9600 Parity:Even
10 TCP/IP Command Connection:point-to-point Peer:10.0.0.96

The report describes the following channels:

> 1 - COM1, in command interpretation mode, rate 115200 kbps, no special options, i.e. no
parity bit, normal stop bit, no break.

> 2 - COM2, in special mode, rate 9600 kbps, even parity bit, normal stop bit, no break.

> 10 – Ethernet (TCP/IP protocol), in command interpretation mode, point-to-point
connection, currently connected to peer address 10.0.0.96.

8.9.2 Assigning COM Channel for Special Input

The SETCONF function with key 302 assigns a communication channel for special input as follows:

SETCONF(302, channel, {0|1})

Where:

channel

Indicates the assigned COM channel, it can be one of the following values:

1 – COM1

2 – COM2

The values that can be used in connection with the channel are:

> 1 – assigns the channel for special input

> 0 – returns the channel to regular command processing.

If a channel is assigned for special input, the controller does not process commands from this
channel. Any input from this channel can be processed only by the INP function (see INP Function).
Output to the channel is provided by regular DISPand SENDcommands (see SPiiPlus Command &
Variable Reference Guide).

313Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

While a channel can be set to special communication mode by the SETCONF command
through the same communication channel, the channel cannot be returned to normal
mode through the same channel. The reason is that in special communication mode
the channel does not process commands and therefore cannot execute SETCONF. You
have to use another channel to return the channel to the regular command processing
mode.

The GETCONF function with key 302 retrieves the state of a communication channel as follows:

GETCONF(302, channel)

The function returns:

> 0 – if the channel is in normal command-processing mode

> 1 – if the channel is in special-communication mode

8.9.3 Setting CommunicationParameters

Currently, the SETCONF function with key 303 is supported only for serial channels (channel number
1 or 2). The function configures the communication rate for the specified channel as follows:

SETCONF(303, channel, baud)

Where:

channel

Indicates the assigned COM channel, it can be one of the following values:

1 – COM1

2 – COM2

baud Specifies the communication rate in the channel.

The most popular communication rates are the following (kbps):

> 115200

> 57600

> 19200

> 9600

> 4800

> 2400

> 1200

> 600

> 300

The function GETCONF with key 303 retrieves the communication rate of the specified channel as
follows:
GETCONF(303, channel)

314Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.9.4 Parity, Stop Bit

The SETCONF function with key 304 set communication options for the channel.

setconf(304, channel, options)

Parameters Description

channel Channel specifies the channel (1- COM1, 2 - COM2)

options

Option is bit mask of the communication options. The bits are interpreted as
follows:

> Bit 2: 0 - normal stop bit, 1 - extended stop bit
> Bit 3: 0 - no parity, 1 - check parity
> Bit 4: 0 - odd parity, 1 - even parity

Example

In order to save the specified setting in the controller, the following ACSPL+ program should be
prepared and saved in one of the available buffers.

The program has an AUTOEXEC label that means that it will automatically start after the
controller power-up.

AUTOEXEC:
CONID = 32 ! Set Slave address 32
setconf(302, 2, 2) ! Set COM2 for MODbus communication
setconf(303, 2, 19200) ! Set baud rate 19200
setconf(304, 2, 0x18) ! Set even parity
STOP

8.9.5 INP Function

Description

The INP function reads data characters from the specified channel and stores them into integer
array.

Syntax

int INP (channel [,variable] [,start_index] [,number] [,timeout])

Arguments

channel

Indicates the assigned COM channel, it can be one of the following values:

1 – COM1

2 – COM2

variable Name of user-defined integer array.

315Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

start_index Index of the array.

number Specifies number of characters to read.

timeout Maximum waiting time (in milliseconds) for response from the channel.

The function returns the number of actually assigned characters.

If the variable argument is omitted, the function dumps all characters received before in the
channel. If the variable argument is specified, the function accepts one or more characters from
the specified channel and assigns them to the sequential elements of the variable array.

Each ASCII character is represented by its numerical value and is stored in a separate element of the
array.

If start_index is specified, the first received character is assigned to the array element with the
specified index. If start_index is omitted, the assignment starts from the first element of the array.

If number is specified, the function does not return until the exact number of characters is
received. Any received character, including carriage return and other non-printable characters, is
stored in the array. In this case the function return value is strictly equal to number.

If number is omitted, the function continues receiving characters until the last element of array is
assigned or the carriage return character is received. The received carriage return is not stored in
the array. The function return indicates the number of assigned array elements.

If timeout is specified, the function waits for input not more than the specified number of
milliseconds. If timeout is omitted, the waiting time is not limited.

8.9.6 String Handling Commands

Text handling commands are used for sending text to the host for purposes of displaying on the
monitor or for recording in a log.

8.9.6.1 DISP Command

Description

The DISP command builds an ASCII output string and sends it to a communication channel. Upon
receipt, the host displays the message on the monitor.

Syntax

DISP expression | "string" [,expression | "string". . .]

Arguments

expression ACSPL+ expression (can be a single variable)

string A string, which must be enclosed with double quotation marks.

A string argument has the format of:

"[text] [escape-sequence] [format-specifier] . . ."

Where:

316Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

text Any ASCII text characters

escape-
sequence

The escape-sequence can be:

\r - Carriage return 0x0d

\n - New line 0x0a

\t - Horizontal tabulation 0x09

\xHH - Any character. The two hexadecimal digits, HH, represent the character's
ASCII code.

format-
specifier

The format specification syntax adheres to a restricted version of the C
language syntax:

% [width] [.precision] type

width - Optional number that specifies the minimum number of characters in
the output.

.precision - Optional number that specifies the maximum number of characters
printed for all or part of the output field, or the minimum number of digits
printed for integer values

type - Required character that determines whether the associated argument is
interpreted as a character, a string, or a number (see table below).

Table 8-32. String Format Type

Character Output Format

d Signed decimal integer.

I Signed decimal integer.

o Unsigned octal integer.

u Unsigned decimal integer.

x Unsigned hexadecimal integer, using "abcdef."

X Unsigned hexadecimal integer, using "ABCDEF."

317Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Character Output Format

e

Signed value having the format: [-]D.DDDD E [SIGN]DDD

Where:

d is a single decimal digit

dddd is one or more decimal digits

ddd is exactly three decimal digits

e indicates exponent

sign is + or -.

E Identical to the E format except that E rather than E indicates the exponent.

f

Signed value having the format: [-]DDDD.DDDD

Where dddd is one or more decimal digits. The number of digits before the
decimal point depends on the magnitude of the number, and the number of
digits after the decimal point depends on the requested precision.

g

Signed value printed in F or E format, whichever is more compact for the given
value and precision. The e format is used only when the exponent of the value
is less than -4 or greater than or equal to the precision argument. Trailing zeros
are truncated, and the decimal point appears only if one or more digits follow it.

G
Identical to the G format, except that E, rather than E, introduces the exponent
(where appropriate).

If an input string argument contains n format specifiers, the specifiers apply to the n subsequent
expression arguments.

The DISP command processes the arguments from left to right. The processing is as follows:

> Expressions:

The expression is evaluated and the ASCII representation of the result is placed in the
output string. The format of the result is determined by a formatting specification (if any)
in the input string.

> Input strings:

Text is sent as-is to the output string. Escape sequences are replaced by the ASCII codes
that they represent. Formatting specifications are applied to the results of any expressions
that follow the string.

Examples:

DISP "%15.10f",FPOS(0)
Display value of FPOS(0) in 15 positions with 10 digits
after the decimal point

DISP "%1i",IN0.2 Display current state of IN0.2 as one digit 0 or 1.

318Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

DISP "FVEL(0)=%15.10f",FVEL(0)
Display value FVEL(0) with 10 decimal points, e.g.,
displayed output is: FVEL(0)= 997.2936183303

DISP "IN0 as hex: %04X",IN0
Display value of IN0 in hex, e.g., displayed output is:
IN0 as hex: 0A1D

disp "IN0.0-3 as binary:
%1U%1u%1u%1u",
IN0.0,IN0.1,IN0.2,IN0.3

Display values of bits 0-3 of IN0 as binary, e.g.,
displayed output is: IN0.0-3 as binary: 0110

The output string is sent to a communication channel. The channel is specified by the current value
of standard DISPCH (default channel) variable. The following values are available:

1 – Serial communication channel COM1.

2 – Serial communication channel COM2.

6 – Ethernet network (TCP).

7 – Ethernet network (TCP).

8 – Ethernet network (TCP).

9 – Ethernet network (TCP).

10 – Ethernet Point-to-Point network. (UDP)

-1 – No default channel is specified, the DISP command uses the last channel activated by the
host.

-2 – All channels.

In order to receive unsolicited messages by a host application, perform the following:

1. Set DISPCH to -2.

2. Set bit 4 of COMMFL to 1.

3. Send SETCONF(306,-1,1) from the same communication channel where unsolicited
messages are expected to be received.

In order to stop the receipt of unsolicited messages by a host application:

Send SETCONF(306,-1,0) from the same communication channel where there is no need any more
to receive unsolicited messages.

8.9.6.2 SEND Command

Description

The SEND command is the same as the DISP command but also specifies the communication
channel for the output string. The communication channel is the first argument.

Syntax

SEND channel-number, disp-arguments

Where:

channel-number is an integer identifying the communication channel to which the message will be
sent (see below).

319Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-33. Channel Number Argument

Channel # Description

1 Serial communication channel COM1

2 Serial communication channel COM2

6 Ethernet network (TCP)

7 Ethernet network (TCP)

8 Ethernet network (TCP)

9 Ethernet network (TCP)

10 Ethernet Point-to-Point network. (UDP)

-1 No default channel is specified, uses the last channel activated by the host

-2 All channels

disp-arguments are the same as those detailed for the DISP command (see DISP Command).

8.9.6.3 Differences between Query Commands and the DISP/SEND Commands

> Query commands are executed immediately and cannot be stored in a program buffer.
The DISP and SEND commands can be executed either immediately or can be stored in a
buffer and executed as a part of program.

> Query commands can address any variable: ACSPL+ standard, global or local. The DISP and
SEND commands can address any ACSPL+ or global variable. Among the local variables, only
the local variables defined in the same buffer where the command is located are
accessible to the DISP command.

> Query commands can address whole arrays or sub-arrays. The DISP and SEND commands
must specify a calculable expression, i.e., only single elements of array may be involved.

> Query commands cannot contain expressions. The DISP and SEND commands can contain
expressions.

> The controller sends the reply to a query command to the same channel from which the
command was received. Results of the DISP command are sent to the communication
channel defined by the DISPCH variable (see SPiiPlus Command & Variable Reference
Guide). Results of the SEND command are sent to the communication channel defined by
the communication channel argument (channel-number).

8.9.6.4 STR Function

Description

The STR function converts an integer array to a string.

320Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Syntax

string STR (variable [,start-index] [,number])

Arguments

variable Name of user-defined integer array.

start_index Index of the array.

number Specifies number of characters.

Return value

The function returns a string composed of the array elements interpreted as characters.

Comments

Each element of the variable array is interpreted as an ASCII character. If an element value is in the
range from 0 to 255, it is directly converted to the corresponding ASCII character. Otherwise, the
value’s modulo 256 is converted.

If neither start_index nor number is specified, the conversion takes all elements of the array. If only
start_index is specified, the conversion takes all characters from the specified index to the end of
array. Specifying number limits the number of characters in the resulting string.

The function can be used within the SEND or the DISP GUI.

Example

The following example provides a mirror for channel 2, so that any received character is sent back:

int Char(1)
INP(2,Char,,1)
SEND 2,str(Char)

8.9.6.5 DSTR Function

Description

The DSTR function converts a string to an integer array.

Syntax

int DSTR(string, variable [,start-index] [,number])

Arguments

string String of characters enclosed in double quotation marks

variable Name of user-defined integer array.

start_index Index of the array.

number Specifies number of characters.

Return value

The function returns the number of actually assigned characters.

321Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Comments

The function decomposes string into individual characters and assigns the characters to the
sequential elements of the variable array.

Each ASCII character is represented as its numerical value and stored in a separate element of the
array.

If start_index is specified, the first character is assigned to the array element with the specified
index. If start_index is omitted, the assignment starts from the first element of the array.

Ifnumber is omitted, the function assigns all characters of the string. If number is specified, the
function assigns the specified number of characters. In both cases the assignment stops when the
last array element is reached.

8.10 TRIGGER Command

Description

The TRIGGER command is used for specifying conditions for general purpose triggering.

Syntax

TRIGGER channel [,expression] [,timeout]

Arguments

channel
Specifies an integer number from 0 to 7. The number defines the triggering
channel, selects the AST element where the triggering bit will be set and
defines the bit in the interrupt tag.

expression

Specifies the triggering condition. After the command is executed, the
controller calculates the expression each controller cycle. Triggering occurs
when the expression changes its value from zero to non-zero. If the argument
is omitted, the command disables triggering in the specified channel.

timeout

Specifies triggering timeout in milliseconds. A positive number specifies how
much time the controller waits for triggering. Once the timeout has elapsed,
and triggering has not occurred, the controller raises the trigger bit
unconditionally.

After any triggering, the controller starts timeout counting from zero. If the
argument is omitted, the triggering works without timeout.

Comments

One TRIGGER command can cause triggering many times. The controller continues calculating the
expression until another TRIGGER command is executed in the same channel. Each time when the
expression changes its value from zero to non-zero, the controller raises the trigger bit and
produces the interrupt.

The table specifies triggering bit and interrupt tag for each triggering channel:

322Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Table 8-34. Trigger Bit and Interrupt for each Channel

Channel Triggering Bit Interrupt tag (Software interrupt 10), hexadecimal

0 AST0.11 0x00000001

1 AST1.11 0x00000002

2 AST2.11 0x00000004

3 AST3.11 0x00000008

4 AST4.11 0x00000010

5 AST5.11 0x00000020

6 AST6.11 0x00000040

7 AST7.11 0x00000080

8.11 Dynamic TCP/IP Addressing

8.11.1 TCP/IP Variable

The firmware supports both static and dynamic assignments of TCP/IP addresses.

The TCP/IP address is defined by the TCPIP variable. If TCPIP has a non-zero value, the controller
uses the value as its TCP/IP address. In this case, other configuration parameters receive the
following default values:

> Subnet mask - 255.255.255.0

> Gateway address - no gateway, i.e. no routing is supported

If TCPIP is zero, the controller uses the DHCP protocol to receive the network configuration from
the DHCP server. The network configuration received from the DHCP server includes the following
parameters:

> Controller's TCP/IP address

> Subnet mask

> Gateway address

To retrieve the assigned address in an ACSPL+ program, use the GETCONF function (see SPiiPlus
Command & Variable Reference Guide) with key 310.

To find all SPiiPlus controllers in the network segment, use the C Library function: acsc_
GetEthernetCards.

8.11.2 Using GETCONF/SETCONF to Access TCP/IP Address

The GETCONF and SETCONF functions with key 310 provide access to the controller TCP/IP address.

323Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

GETCONF(310, 0) returns an integer value that contains the TCP/IP address currently assigned to the
controller. The index argument (second argument) of the function should be zero. If a TCP/IP
protocol is not configured, or not supported, the return value is zero.

SETCONF(310, 0, address) configures the TCP/IP address for the controller. The index argument
(second argument) of the function should be zero. If the address argument is zero, SETCONF
activates a new execution of the DHCP protocol and obtains a new TCP/IP address from the host
(the host may configure the same address as before). SETCONF does not change the TCPIP
parameter. After power-up, the controller is initialized with the TCP/IP address set in the TCP/IP
parameter.

The address value is a 32-bit integer that contains four bytes. Each byte represents one part of the
TCP/IP dot address. The bytes follow in computer order. For example:

SETCONF(310, 0, 0x6400000a) Assigns address 10.0.0.100
?x/GETCONF(310,0) Executed from the terminal returns the

hexi-decimal value: 6400000a

There are several limitations when using SETCONF(310):

> If the TCPIP variable stored in the flash is zero, SETCONF(310) must be used only with zero
address argument. In other words, if the controller is configured for dynamic addressing,
assigning static address is not allowed.

> If the TCPIP variable stored in the flash is not zero, SETCONF(310) must be used only with
non-zero address arguments. In other words, if the controller is configured for static
addressing, switching to a dynamic address is not allowed.

> SETCONF(310) has a long execution time. During this time, communication with the
controller is impossible using any communication channel. Use SETCONF(310) only within
the controller initialization sequence. Avoid attempts to communicate with the controller
and the motor ENABLE command or motion commands while SETCONF(310) is in progress.

8.11.3 Addressing Scenarios

There are four scenarios of assigning TCP/IP addresses to the controller:

1. Static Addressing

Configure the appropriate TCP/IP address in the TCPIP variable and store it in the flash.

After start-up, the controller adopts the address and answers to the corresponding
telegrams.

For using static addressing in a local network, the system administrator needs to reserve
this address to avoid identical addresses in the network segment.

2. Quasi-dynamic Addressing

Configure any non-zero TCP/IP address in the TCPIP variable and store it in the flash.

After start-up, use SETCONF with a non-zero address argument to assign an actual address
to the controller.

This approach makes sense, if the controller is assigned with an address dependent on
some condition available only at run time. For example, the controller may select its TCP/IP
address on the basis of digital input states.

324Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

3. Dynamic Addressing

Configure a zero TCP/IP address in the TCPIP variable and store it in the flash.

After start-up, the controller initiates DHCP communication with the DHCP server and
obtains the TCP/IP address and other network information.

To use this method, the DHCP server should be accessible at the time of controller start-
up.

If the DHCP server is not accessible, the controller repeats the request several times. If all
attempts fail, the controller disables Ethernet channel support and continues initialization.

4. Delayed Dynamic Addressing

Use this method, if the DHCP server is not available at the time of controller start-up. It may
occur, for example, if the controller and the computer running DHCP server are activated
at the same time, and nobody knows which is ready first.

Configure zero TCP/IP address in the TCPIP variable and store it in the flash.

Create an initialization routine in one of the buffers, and store it in the flash:

AUTOEXEC:
WHILE GETCONF(310,0) = 0
SETCONF(310,0,0)
END
! continue initialization

As a result, the controller waits at the beginning of initialization until the DHCP server
succeeds to in supplying a TCP/IP address.

8.12 Non-Default Connections

This section covers handling non-default connections.

It should be noted that many applications require switching between non-default or
default connections within the process of operations. You can return to a default
connection by setting the MFLAGS.#DEFCON (bit 17, Default Connection) to 1. This
automatically resets the connect formula, updates dependence and equates
corresponding APOS to RPOS (see Connection to the Plant).

8.12.1 ROFFS Variable

The ROFFS variable is an 8 element array, one element per axis, that reads the offset calculated by
the controller in the connect formula. As long as the motor is in the default connection
(MFLAGS.#DEFCON = 1), offset ROFFS is zero. However, once you have specified a CONNECT (see
CONNECT Command) formula:

CONNECT RPOS(axis) = F(…)

the controller calculates offset ROFFS(axis) to prevent any immediate change of RPOS(axis) that
may cause a jump of the motor. Then the controller calculates formula:

RPOS(axis) = F(…) + ROFFS(axis)

325Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

for each controller cycle.

The controller recalculates the offset to prevent motor jump when any of the following commands
is executed:

> CONNECT

> SET

> ENABLE

> DISABLE

> KILL

ROFFS reads the current value of the offset. Watching the offset value facilitates development and
debugging of application with complex kinematics.

8.12.2 DAPOS Variable

The DAPOS variable is an 8 element array, one element per axis, that reads the Axis Position
synchronous with the Reference Position. The variable supplements the existing APOS variable.
The problem of the APOS variable is that the axis position is not synchronous with the RPOS and
FPOS. For this reason watching APOS against RPOS or FPOS in the SPiiPlus MMI Application Studio
Scope is inconvenient.

DAPOS reads the same values of axis position, but synchronously with RPOS and FPOS. Using
synchronous axis position facilitates analysis and debugging of the CONNECT formula.

Use only DAPOS for watching the axis position in the Scope.

Use only APOS in the CONNECT formula and in ACSPL+ program.

8.12.3 CONNECT Command

The CONNECT command defines the relation between motors and axes.

The CONNECT command cannot be executed as long as the default connection bit
(MFLAGS.#DEFCON) is raised.

Syntax:

CONNECT RPOS (axis) = expression

WhereRPOS(axis) is an axis RPOS variable (for example, RPOS(0)), which receives the value of the
expression.

For more information about RPOS and other common motion variables refer to the SPiiPlus
Command & Variable Reference Guide.

The connect command is not an assignment command (see Assignment Command). It does not
simply assign the result of the formula on the right side to the axis RPOS. The formula is not
evaluated when the connect command is executed (which would be the case for an assignment

326Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

command); instead, the formula is stored and then evaluated by the controller every controller
cycle to calculate the corresponding RPOS.

After power-up the controller always starts with the default connection. The default connection
means the following for each axis:

> Bit MFLAGS.#DEFCON is raised.

> The default connect formula is defined as CONNECT RPOS = APOS.

> APOS and RPOS are linked, i.e., explicit (through the SET command see SET Command) or
implicit change of one of these variables causes the same change in the other one.

Once an application resets MFLAGS.#DEFCON, it can then execute a CONNECT and (typically) a
DEPENDS command. At this point, the motor is considered to be in non-default connection.

Consider the following examples:

The commands

MFLAGS(1).#DEFCON = 0
CONNECT RPOS(1) = APOS(0)
DEPENDS 1, 0

connect the 1 axis motor position to the 0 axis reference. If the 0 axis motor is also connected to
the 0 axis reference, this provides gantry-like motion of two motors.

The command

PTP 0, 1000

will provide synchronous motion of both 0 and 1 axes motors.

The command:

connect RPOS(0) = APOS(0) + AIN(1)

connects the 0 axis motor position to the 0 axis reference plus analog input 1. In this case the 0 axis
provides a motion and the analog input (for example, an external sensor) supplies a correction for
the 0 axis motor.

The following commands

MFLAGS(2).#DEFCON = 0
connect RPOS(2) = APOS(2) + APOS(3)
depends 2, (2,3)

connect the 2 axis motor to the sum of 2 and 3 axes. The axes can each execute an independent
motion, with the 2 axis motor following the sum of the two motions. Or the axes can participate in a
single multi-axis motion.

The following illustrate uses of the CONNECT command.

327Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The CONNECT command is normally followed by a DEPENDS command (see DEPENDS
Command).

Using a Non-Default Connection

Listed below are some of the tasks that can be resolved using the appropriate connect formula:

> Introduce a gear ratio between a logical axis and a physical motor.

> Compensate for encoder errors and backlash.

> Compensate for non-orthogonality of machine slides.

> Compensate for undesired mutual interference between machine coordinates.

> Implement gantry axes

> Define the physical motion as a sum of a logical motion and a compensating signal.

> Define the physical motion as a sum of two or more logical motions.

> Inverse kinematics, such as programming in Cartesian coordinates a machine that actually
has polar kinematics.

Typically, the CONNECT command for a specific motor is executed only once in an ACSPL+
application.

A typical location for a CONNECT command is after the homing process in the code that follows an
AUTOEXEC label (see Names: Variable and Label). The following pseudocode executes homing of X
and Y axes and configures them as a gantry pair that follows the motion on the X axis:

AUTOEXEC: The controller automatically starts
the program from the AUTOEXEC label
after power-up.

. . . Execute homing of 0 and 1 axes.
MFLAGS1.#DEFCON=0 Reset the #DEFCON bit.
CONNECT RPOS(1)=APOS(0) Set gantry-like connection (1 axis

motor follows 0 axis).
DEPENDS 1,0 Specify dependence (1 axis motor

depends on 0 axis).
SET APOS(0)=0,RPOS(0)=0,RPOS(1)=0 Set origin.
. . . Continue.

A more sophisticated application may require changing the connection in the middle of operations.
The controller applies no limitations regarding when a connection can be changed. In a typical case,
changing connection requires three commands:

CONNECT RPOS(0)=… Specify connection of 0 axis motor.
DEPENDS 0,… Specify dependence of 0 axis motor.
SET APOS(0)=…,RPOS(0)=… Set origin of 0 axis and 0 axis motor.

To return to default connection use the following commands:

328Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

CONNECT RPOS(0)=APOS(0) The 0 axis motor will follow the 0 axis.
MFLAGS(0).#DEFCON=1 Set the #DEFCON bit.
SET RPOS(0)=… Set origin of 0 axis motor

(if #DEFCON=1, APOS is set to the same value).

Offset in Connect Formula

If a motor is in a non-default connection, the APOS and RPOS variables are not linked and may
contain different values.

The CONNECT command specifies a basic formula that the controller uses to calculate the RPOS.
However, in the process of RPOS calculation the controller also adds an implicit offset which is not
specified in the connect formula.

The controller calculates the offset automatically and recalculates it in the following circumstances:

> Execution of CONNECT RPOS=… command for the motor.

> Execution of SET RPOS=… or SET FPOS=… command for the motor.

> Execution of SET APOS=… command for any axis that the motor depends on.

> Execution of ENABLE command for the motor.

When a CONNECT command is executed, the offset is adjusted so that the RPOS specified on the
left side of the connect formula and any APOS specified on the right side retain their current
values. For this reason the CONNECT command can be executed while the motor is enabled and
does not cause a motor jump. Using this implicit offset the controller ignores any explicit offset
specified in the CONNECT formula. For example, the following commands have exactly the same
effect:

CONNECT RPOS(0) = 0.5*APOS(0) + 1000

and

CONNECT RPOS(0) = 0.5*APOS(0) + 2000

because the explicit offset is ignored.

When an ENABLE command is executed, the offset is adjusted so that the connection formula
calculation yields the desired value (RPOS retains its value).

The SET RPOS=… or SET FPOS=… command immediately changes the values of RPOS and FPOS. The
offset is recalculated so that the connection formula calculation yields the new desired value.

The SET APOS=… command immediately changes the value of axis position APOS. In order to retain
the current values of all RPOS components, the controller recalculates the offsets of all motors that
depend on the axis.

8.12.4 DEPENDS Command

Description

The DEPENDS command complements the connect command, specifying dependence between a
motor and axes.

329Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The DEPENDS command cannot be executed as long as the default connection bit
(MFLAGS.#DEFCON) is raised.

Syntax

DEPENDS dependent_axis, axes_specification

Comments

The dependent_axis argument specifies an axis and the axes_specification argument specifies
one or more axes on which the motor depends.

Typically, a DEPENDS command will follow a CONNECT command. Whereas a CONNECT command can
define a mathematical correspondence between a motor’s reference position (RPOS) and one or
more axis positions (APOS), a DEPENDS command specifies the logical dependence between a
motor and axes.

The DEPENDS command is necessary because generally the controller is not capable of deriving the
dependence information from the CONNECT formula alone. For this reason, once a CONNECT
command is executed, the controller resets the dependence information of the motor; the motor
depends only on the corresponding axis.

Dependence information, as specified using a DEPENDS command, is required in the following
cases. If the dependence information is not provided correctly, the controller may display strange
behavior.

> A motor/axis query (for example, ?0) returns the non-default dependence for that motor.

> When initiating a motion, the controller verifies if each motor dependent on the axes
involved is enabled. If one or more motors are disabled, the motion does not start.

> If in the process of motion a motor is disabled or killed due to a fault or due to a DISABLE or
KILL command, the controller immediately terminates all motions involving the axes that
the motor depends on.

> Once a SET APOS=… command is executed, the controller adjusts offsets in the connection
formula of the motors that depend on the specified axis.

8.12.5 MATCH Function

Description

The MATCH function calculates the axis position that matches current Reference Position of the
same axis with zero offset.

Syntax

MATCH (axis, from, to)

Arguments

axis Specifies the axis to be matched.

from/to Restricts the range within which the matching value is searched.

330Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Comments

The function is useful in the case of non-default connections if a motor depends only on the same
axis, a typical example is error compensation. For example, the following connection:

CONNECT RPOS(1) = APOS(1) + MAPBY1(APOS(1), ErrorTable)
DEPENDS 1,1

defines 1-to-1 dependence. In this case, the command:

SET APOS(1) = match(1, -1000, 1000)

can be used to find matching APOS(1) in the range -1000 to +1000 and to set offset ROFFS1 to zero.
In mathematical terms, the function finds the root of equation:

RPOS = F(x)

where RPOS is the current value of the RPOS variable and F(x) is the connect formula specified by
you with APOS substituted for x.

The function succeeds if the unique root exists in the specified range. If there are several roots in
the range, the function returns one of them. If the root does not exist, the function result is
incorrect. It is your responsibility to restrict the range so that the function provides proper result.

8.13 Input Shaping

Input Shaping is a feed-forward control technique for reducing vibrations in computer controlled
machines. The SPiiPlus controller implements an Input Shaping algorithm patented by Convolve,
Inc.

Input Shaping support is an optional feature in the SPiiPlus controller. To use the feature, specify
the option in the controller order code, as described in the product data sheet.

8.13.1 INSHAPEON

Description

The INSHAPEON function starts Input Shape algorithm for specified axis. The result is a dynamic
output signal equal to the convolution of the input signal and the convolution pulses.

Syntax

INSHAPEON Axis_Index, T_array, A_array

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

T_array
One-dimensional array specifying the times of each
convolution in milliseconds.

A_array
One-dimensional array specifying the amplitudes of each
convolution pulse

331Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Return Value

None

Comments

Vectors T_array and A_array define characteristics of the convolution pulses. The array sizes should
be identical.

Vector T_array contains real numbers, so fractional numbers may be specified. However, the
position of each pulse is rounded to a multiple of the controller cycle. If the controller cycle is one
millisecond, the numbers in T_array are rounded to integers. The elements of T_array must be
arranged in ascending order.

The sum of A_array entries must equal 1.

See the Using the Convolve Web Site chapter in the ACSPL+ Programmers Guide to get the
explanation how to calculate the T_array and A_array parameters

Examples

global real CnvT(5), CnvA(5), CnvB(420)
VEL(0) = 120
ACC(0) = VEL(0)*10
JERK(0) = ACC(0)*10

CnvT(0)=0; CnvT(1)=64 ; CnvT(2)=68 ;CnvT(3)=72; CnvT(4)=139
CnvA(0)=25345/1e5; CnvA(1)=160/1e5; CnvA(2)=30987/1e5; CnvA(3)=18949/1e5;
CnvA(4)=24559/1e5

enable 0
InShapeOn 0, CnvT, CnvA
ptp/e 0,0
ptp/e 0,50
till ^MST(0).#MOVE
InShapeOff 0
stop

!INPUTSHAPE EXAMPLE: IF CTIME < 1

!In this case we need to multiply CnvT array by CTIME. Here CTIME = 0.5
global real CnvT(5), CnvA(5), CnvB(420)
CnvT(0)=0*CTIME; CnvT(1)=1*CTIME ; CnvT(2)=214*CTIME ;CnvT(3)=253*CTIME;
CnvT(4)=501*CTIME
CnvA(0)=22960/1e5; CnvA(1)=10361/1e5; CnvA(2)=3186/1e5; CnvA
(3)=45767/1e5;
CnvA(4)=17726/1e5
enable 0
InShapeOn 0, CnvT, CnvA
ptp/e 0,0
ptp/e 0,30
till ^MST(0).#MOVE

332Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

!InShapeOff 0
stop

8.13.2 INSHAPEOFF

Description

The INSHAPEOFF function stops Input Shape algorithm for specified axis

Syntax

INSHAPEOFF Axis_Index

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

Return Value

None

8.13.3 AST

The #INSHAPE bit is set to 1 after calling INSHAPEON. The bit is set to zero after calling INSHAPEOFF.

Description

AST is an integer array, with one element for each axis in the system, the elements of which
contain a set of bits used for displaying the current axis state.

Syntax

[command] AST(axis_index).bit_designator

Arguments

command Typical commands are DISP and the like.

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

bit_
designator

A description of the AST bit designators is given in Table 8-35.

Table 8-35. AST Bit Descriptions

Bit Name No. Description

#LEAD 0 1 = axis is leading in a group

#PEG 2 1 = PEG is in progress

#DC 3 1 = Axis data collection is in progress

333Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Name No. Description

#PEGREADY 4
1 = all values are loaded and the Incremental/Random PEG is ready
to respond to movement

#MOVE 5 1 = Axis is involved in a motion

#ACC 6 1 = Axis in accelerating motion state

#BUILDUP 7 1 = Segments build-up

#VELLOCK 8
1 = Slave is synchronized to master in velocity lock mode - slave
velocity strictly follows the master velocity.

#POSLOCK 9
1 = Slave is synchronized to master in position lock mode - slave
position strictly follows the master position.

#TRIGGER 11
1 = Produces an interrupt to the host application, enabled by
IENA.26

#NEWSEGM 16

The controller sets the bit to inform that a new segment is required
to be provided by the application. The bit is set starvation_margin
ms before the starvation condition occurs. The starvation condition
is indicated by #STARV bit.

#STARV 17

The controller sets the bit to indicate starvation condition. The
starvation condition means that there are not enough further
segments to continue the motion with required velocity. In this
case, the controller starts decelerating the motion with ½ JERK in
order to prevent motion discontinuity and avoid mechanical jerks.
Once the application begins supplying segments at a sufficient rate,
the controller returns the motion back to normal condition.

Note, that often the starvation condition causes inefficient velocity
generation and increases the time required for completing the
required motion path.

#ENCWARN 18
Indicates if there is an encoder warning. Cleared by the ACSPL+
FCLEAR command.

#ENC2WARN 19
Indicates if there is an secondary encoder warning. Cleared by the
ACSPL+ FCLEAR command.

#INRANGE 20 Laser In Range

#LCTICKLE 21
0: tickle mode is off

1: tickle mode is active

334Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Bit Name No. Description

#LCMODUL 22
0: modulation is off

1: modulation is active

#FOLLOWED 23
0: Axis in regular mode

1: Axis in slave mode and follows the profile generated by RTC6

#HOLD 24
0: hold is off

1: hold is in progress

#INHOMING 25
0: homing is not in process

1: homing is in process

#DECOMPON 26

0: dynamic error compensation is switched off

1: dynamic error compensation is switched on

The bit is set to 0 in the following cases:

> Calling ERRORMAPOFF function

> Calling ERRORUNMAP function (in case there are no other
active dynamic error compensation zones of the specified
axis)

> During homing process initiated by HOME command
(switched ON back at the end of the process

> Encoder Error / Encoder Not Connected faults

> Changing one of the encoder-related parameters (E_TYPE,
E_FREQ, E_SCMUL, SLPBITS, E_AOFSS)

> Changing encoder routing (SLPROUT)

#INSHAPE 27
0: Input Shaping not Active

1: Input Shaping Active

#ENCPROC 29
0: Encoder Initialization not in process
1: Encoder Initialization in process

Tag

7

Accessibility

Read-Only

Related ACSPL+ Commands

MASTER, SLAVE

335Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Related ACSPL+ Variables

MST

COM Library Methods and .NET Library Methods

ReadVariable, GetAxisState

C Library Functions

acsc_ReadInteger, acsc_GetAxisState

8.13.4 APOSFILT

Description

APOSFILT is real array with one element for each axis in the system. The array elements store the
current desired motor position, including the filtering operation result, such as input shaping.

APOSFILT updates on every controller cycle according to the filtering algorithm. When
the filtering algorithm is not configured, APOSFILT = APOS.

TAG

368

ACCESSIBILITY

Read-Only

RELATED ACSPL+ COMMANDS

All motion commands

RELATED ACSPL+ VARIABLES

FPOS, RPOS, APOS,

.NET LIBRARY METHODS

ReadVariable(), WriteVariable()

C LIBRARY FUNCTIONS

acsc_ReadReal(), acsc_WriteReal()

8.13.5 Using the Convolve Web Site

This section describes the procedures used for designing Input Shapers™ using the Convolve,
Incorporated web site for designing Input Shapers™ located at: http://inputshaping.convolve.com.

Access to the web site requires a user name and password.

Use the name and password that you received from ACS Motion Control along with the
controller.

336Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

http://inputshaping.convolve.com/

The first time you log into the web site, you will be required to review the licensing agreement for
use of the site. For each subsequent log-in you will be reminded of the licensing agreement and
remaining number of trials until expiration of the account will be displayed.

8.13.6 Data Entry Dialog

The Data Entry dialog, is the primary means for entering the parameters to design an Input
Shaper™. The Data Entry dialog displays the current User ID, Name, and Date. Use the form fields
as follows:

> Constraint - Set to Digital Positive Mixed Constr.. This gives you the maximum freedom
for selecting other design parameters.

> Output Format - Set to Standard Format.

> Axis - Set the required axis

> Frequency or DeltaT - Set DeltaT value according to the controller parameter CTIME (Cycle
Time). CTIME defines the controller cycle in milliseconds, and DeltaT should be defined in
seconds; therefore, if CTIME=1, set DeltaT=0.001. Frequency is automatically computed.

> Amplitude Sum - Set = 100000

> Measured Frequency and Damping entries - Enter from one up to six vibration
frequencies and the associated damping for each frequency. The vibration frequencies are
modeled as second order systems, which are normally characterized by a natural
frequency and damping ratio (or zeta).

The damped natural frequency will be less than the natural frequency by the factor,

The frequencies are referred to as “measured frequencies” because the program
performs the calculations to convert them to “undamped natural frequencies”.

> Hardware ID, Location, Tooling ID and Notes - optional fields that can be used to
document a configuration for a specific machine. Text entered into these fields is copied
into the output file as a comment.

> Robust check box - should normally be selected to design a “robust” Input Shaper™ for a
range of ±15% of the nominal frequency. This box can be left unchecked when the range
of frequency variation is less than ±5%. Non-robust Input Shapers™ are 50% shorter in
duration than a robust Input Shapers™. Please refer to the discussion on Insensitivity
Curves below for more information.

When all of the data has been entered, press the Calculate to start the calculation. It can take
several seconds to complete the calculation.

337Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-5. Data Entry Dialog

When the calculations are complete, the following screen appears.

338Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-6. Screen at the Conclusion of Calculation

Click Download to access another window that contains the results of the calculation. A sample
output file is shown below for the design of an Input Shaper with the following parameters:

> Measured Vibration Frequency - 100 Hz

> Damping - 0.05

> Delta T for trajectory generation - 0.001 second

> Amplitude sum - 100000

> Robust was selected - (Constraint = 1)

This is an illustration of the output.

339Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-7. Window Accessed by Download

The output from the calculation is five impulses that characterize the Input Shaper™. The delays
are specified in terms of digital time steps and for Delta T =.001 second, the delays would be at 0,
0.002, 0.005, 0.007 and 0.011 seconds.

The reported Time values should be used in the T argument of the inshape function. The reported
Amp values are multiplied by 100000. The following example shows how the inshape arguments
should be initialized to use the reported values:

340Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

global real CnvT(5), CnvA(5), CnvB(12)
!Definitions

CnvT(0)=0; CnvT(1)=2; CnvT(2)=5;CnvT(3)=7; CnvT(4)=11;
!Initialize CnvT array

CnvA(0)=0.18693; CnvA(1)=0.11701; CnvA(2)=0.29279;CnvA(3)=0.22495; CnvA(4)=0.17832;
!Initialize CnvA array

... !Program actions
stop
on MST(1).#ENABLED !Execute auto routine once the 1 axis is

!enabled

MFLAGS(1).#DEFCON=0 !Reset default connection flag
connect RPOS(1)=inshape(APOS(1),5,CnvT,CnvA,CnvB)

!Define connection
depends 1,1 !Define Dependance
ret

The results from the calculation can be saved directly by using the web browser file GUI File gSave
as …. Save the results as a text file (*.txt), so Input Shaper™ coefficients can be downloaded into a
controller. The same file will sent by email to the email account specified when the account was
created.

Click the Curve option (shown above) to display the useful frequency range for the Input Shaper™.
A new window, opens to display the Insensitivity Curve. This plot is the Insensitivity Curve for the
example:

341Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-8. Insensitivity Curve Illustration

The Insensitivity Curve displays the theoretical amount of residual vibration that results after
applying the Input Shaper™ to the system. The horizontal axis is the vibration frequency of the
system and the vertical axis is the percentage of remaining or residual vibration. When the residual
vibration = 0, for a perfect linear system, there should be no vibration after applying the Input

342Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Shaper™. In the case shown above, the residual vibration should be 0 at a frequency of 100 Hz,
which was the design frequency.

If the frequency of the actual system is not equal to 100 Hz, there will be residual vibration present.
This level of vibration is expressed on a percentage basis. If the residual vibration equals 100%, then
the no vibration reduction has occurred. For the Input Shaper™ shown above, the system vibration
frequency could vary between 85 to 115 Hz and the residual vibration should be less than 5% (or
when compared to the case of not using the Input Shaper™, the vibrations should be reduced by
95%).

Vibration reduction is expressed for a “perfect” linear system. There are some
examples of perfect, linear systems in the real world that do achieve close to 100%
cancellation. One good example of a “perfect” system is a simulation. Input Shaping
usually performs very well in simulation. However for most physical systems, the
vibration reduction will usually be in the range of 95 to 98% of the original vibrations.

The frequency range for the Insensitivity Curve can be changed by selecting new minimum and
maximum frequency values and then clicking New Curve. The damping ratio can also be changed
to determine the effect of changes in the estimated damping of the system. In general, changes in
damping in the range from 0.005 to 0.1 have a limited effect on the Insensitivity Curve. When the
system damping ratio is greater than 0.1, the effectiveness of the Input Shaper™ will be improved
by specifying a damping ratio that is close to that of the actual system.

The Insensitivity Curve can also be used to examine the effect of selecting whether or not an
Input Shaper™ should be designed using the Robust selection. If Robust is not selected for a
particular frequency, the useful range of the Input Shaper™ will be reduced. For example the
Insensitivity Curve for the same Input Shaper™ without Robust is:

343Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-9. Insensitivity Curve without Robust

In this case, the frequency range for 95% cancellation of the vibration is much smaller, 95 to 105Hz.
However the benefit is that the duration of the Input Shaper™ will be 50% less.

It is possible to use non-robust setting to design an Input Shaper™ that will be effective over a
wider range of frequencies. Two frequencies can be specified to create a frequency band for
vibration cancellation.

344Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.14 DRA Algorithm

The ACS proprietary Disturbance Rejection Algorithm (DRA) is used to improve the disturbance
rejection response of the servo, and helps to minimize the position error during the settling phase
and shorten the settling time.

The most common use of the algorithm is to improve the settling of systems mounted on passive
isolation platforms. Passive isolation is typically used to isolate systems from disturbances
transmitted from the floor. They employ a seismic mass supported on a soft spring made of rubber,
metal, or air. The spring’s damping action absorbs vibrations above the spring’s resonance. For this
reason, passive isolation manufacturers usually try to lower spring resonant frequency to increase
the effective isolation range. When a servo force is applied to generate motion, it also acts on the
isolated stationary base, causing it to vibrate. Because the frequency is low (usually below 1 Hz, to
10 Hz) and damping is very light, the isolation system continues vibrating long after the motion
profile has ended. This vibration acts as disturbance to the servo system, introduces position error,
and extends the settling time.

The Disturbance Rejection algorithm is used to minimize the latter effect and improve the position
error during settling. The green graph shows the velocity command (in [mm/sec]) of a linear stage
mounted on passive isolation, with a resonant frequency of approximately 5 Hz. The red graph
shows the position error with a standard PIV algorithm. The 5Hz disturbance is clearly observed
during settling. The disturbance is relatively small (less than 1 micron), yet it may be critical if the
required settling window is very small (as an example, the resolution of semiconductor instruments
is approaching and in some cases going below 1nm). This disturbance can be minimized by
increasing the PIV gains (SLVKP, SLVKI, SLPKP - see SPiiPlus ACSPL+ Command and Variable
Reference Guide), yet it cannot necessarily be eliminated and if the values of the PIV gains are too
high this may lead to marginal stability. A better solution is using the DRA algorithm. As it can be
seen in the blue graph the disturbance is fully eliminated.

If tuned properly the algorithm has minimal effect on the servo stability margins.

345Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-10. Example 1 of Using DRA

The meanings of the colors of the scope shot are:

> Green - Reference velocity (200 mm/sec per division)

> Red - Position error without DRA (1 division = 2 microns)

> Blue - Position error with DRA (1 division = 2 microns)

Figure 8-11. Example 2 of using DRA (zoomed)

346Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The meanings of the colors of the scope shot are:

> Green - Reference velocity (1 division = 100 mm/sec)

> Red - Position error without DRA (1 division = 1 microns)

> Blue - Position error with DRA (1 division =1 microns)

DRA has two parameters that have to be tuned:

> SLDRA - This is a frequency specified in [Hz]. It should typically be set to 1-2 times the
crossover frequency of the open loop FRF. In the example shown below the open loop
crossover frequency was about 100Hz, so SLDRA was set to the same value.

> SLDRX - This parameter stands for maximum DRA correction and specified in units/sec.

As a rule-of-thumb, it should be set according to the maximal periodical velocity error
during the settling process. This can be deduced by observing the feedback velocity (FVEL)
variable in the SPiiPlus MMI Application Studio SCOPE, when SLDRX = 0. In the example
shown above, it is about 0.01 mm/sec. Based on the time domain response the value
should be further optimized to achieve the optimal response with minimal overshoot and
minimal settling time.

In order to disable DRA both parameters are set to zero (default).

DRA is usually not very effective if the vibration frequency is relatively high (>10Hz), or
the system bandwidth is very low.

Excessive values of SLRA, and SLDRX may cause servo instability, ringing and increased standstill
jitter. In such cases the parameters should be significantly reduced. With good settings, you should
usually be able to double the parameters without getting instability.

347Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-12. Example of Velocity Error

Velocity error (1 division = 0.02 mm/sec) during settling process of a linear axis. The maximal value
of the periodical error is used to determine the SLDRX parameter.

8.15 BI-Quad Filter

A Bi-Quad filter is added to the velocity loop control in addition to the existing 2nd order Low-pass
and Notch filters.

The Bi-Quad filter is the most general 2nd order filter. It has two poles and two zeros. It can be
thought of as a high-pass filter in series with a low-pass filter. The transfer function of the Bi-Quad
filter is as follows:

Where:

> ωN and ωD are the numerator (high-pass filter zero) and denominator (low-pass filter pole)
frequencies, respectively.

> ζN and ζD are the numerator and denominator damping ratios, respectively.

The corresponding ACSPL+ parameters are:

> SLVB0NF, SLVB0DF - numerator and denominator frequencies in [Hz]. Range: 0.1 - 4000
[Hz].

> SLVB0ND, SLVB0DD - numerator and denominator damping ratios. Range: 0.01 - 1.

> MFLAGS bit 16 is used to activate the filter (by default the filter is off).

348Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

The Bi-Quad filter can be used to compensate mechanical resonances, improve stability margins
and system bandwidth.

The Bi-Quad filter can be configured as an additional Notch using the following formulas:

> Set the numerator and denominator frequencies equal to the Notch frequency in[Hz]:

>

> Set the numerator damping ratio equal to half the ratio between the Notch width and
Notch frequency:

>

Maximal recommended ratio between width and frequency= 1/3.

> Set the denominator damping ratio equal the numerator damping ratio times the Notch
attenuation (in absolute value):

>

Below there are several examples that demonstrate the generality of the Bi-Quad filter.

Figure 8-13. Bi-Quad Configured as a Notch Filter

SLVB0NF = SLVB0DF

SLVB0ND < SLVB0DD

349Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

Figure 8-14. Bi-Quad Configured as a 2nd Order Lead Filter

This kind of filter is used to improve the phase margin

SLVB0NF < SLVB0DF

In the example the damping ratios are equal:

SLVB0ND=SLVB0DD =0.707

Figure 8-15. Bi-Quad Configured as a 2nd Order Lag Filter

350Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

This kind of filter is used to improve the gain margin

SLVB0NF > SLVB0DF

In the example the damping ratios are equal:

SLVB0ND=SLVB0DD =0.707

Figure 8-16. Bi-Quad Configured as a 2nd Order Low Pass Filter

SLVB0NF > SLVB0DF

8.16 Feedback Routing

The new routing implementation in NT allows any axis to use any encoder input available. Routing
is effected through using the SLPROUT(position feedback), SLVROUT (velocity feedback) and
SLCROUT (commutation position feedback) variables (for details of these variables see SPiiPlus
Command & Variable Reference Guide).

Feedback is displayed using the FPOS (associated with SLPROUT), FVEL (associated with SLVROUT),
and FACC (associated with SLCROUT) variables.

An encoder error in an encoder pointed to by SLPROUT will cause an encoder error in the axis. An
encoder error in an encoder pointed to by either SLVROUT or SLCROUT will cause an encoder2 error
to be reported.

Index and Mark inputs are also routed according to SLPROUT. Routing two axes to a single input will
cause undefined index and mark behavior and should be avoided.

The firmware will clear all encoders associated (SLPROUT, SLCROUT, SLVROUT) with an axis following
an encoder reset.

Encoder variables (E_TYPE, E_SCMUL, SCCOFFS, SCSOFFS, SCGAIN, and SCPHASE) are connected to
the encoder feedback, not an axis; therefor they are unaffected by routing.

351Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

8.17 Voltage Mode

A mismatch of current ratings between a motor and a drive may result in poor motor operation
due to low resolution of current feedback. Voltage mode is designed to overcome this issue by
bypassing the current control.

Operation in voltage mode motor is still protected by the RMS protection (XRMSM), but no longer
protected from the current spikes during motion or at idle (XCURI and XCURV). XCURI and XCURV
represent the voltage limits instead of current limits.

Current limits may be calculated as follows:

max_current_move = XCURV / 100 * bus_voltage / motor_resistance

max_current_idle = XCURI / 100 * bus_voltage / motor_resistance

Voltage mode is available for the following products, starting from firmware version 3.02: UDMnt,
UDMpc, UDMlc, UDMsd, UDMmc, NPMpm, IDM and ICM.

To enable voltage mode set MFLAGSX(axis).3 (#VOLTMODE) = 1.

Enabling or disabling the voltage mode is possible only while the motor is disabled.

If voltage mode is enabled, current loop tuning is unavailable in the Adjuster Wizard component of
SPiiPlus MMI Application Studio.

352Version 3.02

ACSPL+ Programmer's Guide
8. Advanced Features

9. Generic EtherCAT Master
This chapter describes the generic interface of EtherCAT master functionality for the SpiiPlus family.
This interface allows configuring and controlling any EtherCAT-compliant slave device via ACSPL+
commands and variables. Some devices, like qualified motion drives and I/O, will have a special
interfaces in addition; however the generic one is the base and can be used for them too.

9.1 Stack Behavior

On the controller's start-up, the stack looks for the C:\ECAT.XML file. This file describes the network
setup completely according to EtherCAT standard. The stack performs the following sequence of
actions, if any of them is not successful, the sequence is stopped and the stack reports failure to go
operational.

1. Scan the network and verify the scanned results via the XML file. In case of inconsistency
stop

2. Initialize each slave

3. Initialize DC transmission

4. Set slaves to OP state

5. Initiate Master-Bus synchronization (if applicable) and wait for synchronization

6. Set Master state to OP

9.2 Interface Description

9.2.1 ACSPL+ Variables

9.2.1.1 ECST - EtherCAT State

The ECST is a one-byte variable the bits of which provide indications of the status of the EtherCAT.
The status stored in the bits are:

Table 9-1. ECST Bits

Bit Designator Description

0 #SCAN The scan process was performed successfully.

1 #CONFIG There is no deviation between XML and actual setup.

2 #INITOK All bus devices are successfully set to INIT state.

3 #CONNECTED Indicates valid Ethernet cable connection to the master.

4 #INSYNC
If DCM is used, indicates synchronization between master and the
bus.

5 #OP The EtherCAT bus is operational.

6 #DCSYNC Distributed clocks are synchronized.

353Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

All bits (except #INSYNC in some cases) should be true for proper bus functioning, for
monitoring the bus state, checking the #OP bit is sufficient. Any bus error will reset the
#OP bit.

9.2.1.2 ECERR

Any EtherCAT error sets ECST.#OP to false and the error code is latched in the ECERR variable. The
only way to reset the error state and to clear the ECERR value is by calling ECRESTART function.

The EtherCAT error codes are:

Table 9-2. EtherCAT Error Codes

Error Code Description

6000 General EtherCAT error.

6001 EtherCAT cable not connected.

6002 EtherCAT master is in incorrect state.

6003 Not all EtherCAT frames can be processed.

6004 EtherCAT Slave error.

6005 EtherCAT initialization failure.

6006 EtherCAT cannot complete the operation.

6007 EtherCAT work count error.

6008 Not all EtherCAT slaves are operational.

6009 EtherCAT protocol timeout.

6010 Slave initialization failed.

6011 Bus configuration mismatch

9.2.1.3 #ETHERCAT

The #ETHERCAT command is available for gaining complete information about the connected
EtherCAT slaves: The command is entered through the SPiiPlus MMI Application Studio
Communication Terminal. The command provides the following:

> Slave number

> Vendor ID

> Product ID

> Revision

354Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

> Serial number

> EtherCAT physical address

> DC support

> Mailbox support

> PdoIndex

Following the display of the above general data, a list of network variables is displayed. Each
variable is described with:

> Name (as in XML)

> Offset inside the telegram (magic number that is used for mapping)

> IN or OUT description

> Data size

9.3 EtherCAT Functions

9.3.1 Mapping Functions

9.3.1.1 ECIN

Description:

The ECIN function is used for mapping input variables to the EtherCAT network.

Syntax:

ECIN[/b](int offset, Varname)

Arguments:

OFFSET

Internal EtherCAT offset (in bytes or bits) of network variable (which can be
seen by running the #ETHERCAT command).

> No suffix: EtherCAT offset in bytes

> "/b" suffix: the offset is in bits

VARNAME Valid name of ACSPL+ variable, global or standard.

It is recommended to use the ECGETOFFSET function to retrieve the offset, in bytes or
bits.

Comments:

Once the function is called successfully, the Firmware copies the value of the network input
variable at the corresponding EtherCAT offset into the ACSPL+ variable, every controller cycle.

There is no restriction on number of mapped network variables.

The mapping is allowed only when stack is operational, that is, ECST.#OP is true.

355Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

In the event of incorrect parameters or stack state, the function will produce the corresponding
runtime error.

9.3.1.2 ECOUT

Description:

The ECOUT function is used for mapping output variables to the EtherCAT network.

Syntax:

ECOUT[/B](int offset, Varname)

Arguments:

OFFSET

Internal EtherCAT offset (in bits or bytes) of network variable (which can be
seen by running the #ETHERCAT command).

> No suffix: EtherCAT offset in bytes

> "/b" suffix: the offset is in bits

VARNAME Valid name of ACSPL+ variable, global or standard.

It’s recommended to use the ECGETOFFSET function to retrieve the offset, in bytes or
in bits.

It’s possible to use combine the “/r suffix with the “/b” suffix.The syntax is as following:

Ecout/rb (int offset, Varname)

Comments:

The Firmware copies the value of ACSPL+ variable into the network output variable at the
corresponding EtherCAT offset, every controller cycle.

There is no restriction on number of mapped network variables.

The mapping is allowed only when stack is operational, that is, ECST.#OP is true.

In the event of incorrect parameters or stack state, the function will produce the corresponding
runtime error.

9.3.1.3 ECUNMAP

Description:

The ECUNMAP is used for resetting all previous mapping defined by ECIN and ECOUT.

Syntax:

ECUNMAP

356Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

Comments:

The function call is legal only when stack is operational, that is, ECST.#OP is true.

9.3.1.4 ECCLRREG

Description

ESC Error Counters Registers Clear. The ECCLRREG function clears the contents of the error counters
registers.

Syntax

void ECCLRREG(index,offset)

Arguments

Index EtherCAT slave index.

Offset Register offset in the Beckhoff memory.

Return Value

None

Comments

When the Offset value is -1, all error counters in all slaves are cleared. Otherwise, only the specific
register at the specified Offset is cleared.

After executing the ECCLRRG function, we recommend to execute the FCLEAR function without
parameters before running ECGETREG.

Example

Run the following code example in a Program Buffer.

ECCLRREG(0,0x310)
FCLEAR
STOP

You can also enter this code in the SPiiPlus MMI Application Studio Connection Terminal:

ECCLRREG(0,-1).

9.3.1.5 ECGETREG

Description

ESC Error Counters Registers (Beckhoff Memory). The ESCs have numerous error counters that help
you detect and locate errors. The ECGETREG function enables you to view the contents of these
registers.

Syntax

int ECGETREG(index,offset)

357Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

Arguments

Index EtherCAT slave index.

Offset Register offset in the Beckhoff memory.

Return Value

None

Comments

The fsupported error counter registers are:

Table 9-3. Supported Error Counter Registers

Offset Name Description

0x300
Port Error Counter
(CRC A)

Error Counted at the Auto-Forwarded (per port). Each
register contains two counters:

Invalid Frame Counter: 0x300/2/4/6

RX Error Counter: 0x301/3/5/7

0x302
Port Error Counter
(CRC B)

0x304
Port Error Counter
(CRC C)

0x306
Port Error Counter
(CRC D)

0x308
Forwarded RX Error
Counter (CRC A/B)

Invalid frame with marking from previous ESC
detected (per port).

0x309
Forwarded RX Error
Counter

0x30A
Forwarded RX Error
Counter (CRC C/D)

0x30B
Forwarded RX Error
Counter

0x30C
ECAT Processing Unit
Error Counter

Invalid frame passing the EtherCAT Processing Unit
(additional checks by processing unit).

0x30D PDI Error Counter Physical Errors detected by the PDI.

0x310
Lost Link Counter, Port
A (IN)

Link Lost events (per port).

358Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

Offset Name Description

0x311
Lost Link Counter, Port
B (OUT)

0x312
Lost Link Counter, Port
C

0x313
Lost Link Counter, Port
D

If a cable is unplugged, we recommend using the FCLEAR command before using
ECGETREG. The mapping is allowed only when stack is operational.

Example

Run the following code example in a Program Buffer.

I0=ECGETREG(0,0x310)
STOP

You can also enter this code in the SPiiPlus MMI Application Studio Connection Terminal:

?ECGETREG(0,0x310)

.

9.3.1.6 ECGETSLAVES

Description

This function is used to retrieve the number of slaves in an EtherCAT network.

Syntax

ECGETSLAVES

Arguments

None

Return Value

Number of EtherCAT slaves in the network.

Comments

If a slave was added or removed, the ECRESCAN command should be used before using
ECGETSLAVES again.

9.3.1.7 ECUNMAPIN

Description

This function is used to reset all previous mapping defined by ECIN to a specfic offset.

359Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

Syntax

ECUNMAPIN(ECOffset)

Arguments

ECOffset An integer providing the offset to which a variable was mapped using ECIN.

Return Value

None

Comments

The mapping is allowed only when stack is operational.

Example

Given the previous execution of ECIN(48,I0), ECUNMAPIN(48) will unmap only I0.

9.3.1.8 ECUNMAPOUT

Description

This function is used to reset all previous mapping defined by ECOUT to a specfic offset.

Syntax

ECUNMAPOUT(ECOffset)

Arguments

ECOffset An integer providing the offset to which a variable has been mapped by ECOUT.

Return Value

None

Example

Assuming previous execution of ECOUT(48,I0) and ECOUT(50,I1), executing ECUNMAPOUT(48) will
unmap only I0.

9.3.2 CoE Functions

CoE functions are required for SDO transfers in CoE. SDOs are part of the cyclic EtherCAT data
transfer. It is impossible to define a generic function for any kind of mailbox transfer, such as
protocols like EoE, FoE and VoE have their own definitions. So CoE is supported first.

The #ETHERCAT command can be used to check if a slave has Mailbox support.

9.3.2.1 COEWRITE

Description:

The COEWRITE function is used to write a value into a given slave.

360Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

Syntax:

COEWRITE[/size] (int slave,int Index,int Subindex,real Value)

Arguments:

size 1, 2 or 4 - the number of bytes in the OD or /f for floating.

slave Slave number (can be obtained from the #ETHERCAT command)

index Index in the OD.

subindex Subindex in the OD.

Value Value to be written.

Comments:

In case of wrong parameters, the corresponding runtime error will be generated. The function
cannot be used in the SPiiPlus MMI Application Studio Communication Terminal. The function delays
the buffer execution on its line until it is successful or fails the whole buffer with timeout or other
error.

This function with the “/d” suffix provides the capability of reading a double type (64
bit).

9.3.2.2 COEREAD

Description:

The COEREAD function is used to read a value from a given slave.

Syntax:

real COEREAD[/size] (int slave,int Index,int Subindex)

Arguments:

size 1, 2 or 4 - the number of bytes in the OD or /f for floating.

slave Slave number (can be obtained from the #ETHERCAT command).

index Index in the OD.

subindex Subindex in the OD.

Comments:

The function returns the received value or fails with runtime error.

In case of wrong parameters, the corresponding runtime error will be generated. The function
cannot be used in the SPiiPlus MMI Application Studio Communication Terminal. The function delays
the buffer execution on its line until it is successful or fails the whole buffer with timeout or other
error.

361Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

This function with the “/d” suffix provides the capability of reading a double type (64
bit).

362Version 3.02

ACSPL+ Programmer's Guide
9. Generic EtherCAT Master

10. Servo Tuning

10.1 Stepper Closed-loop Position Correction

Stepper motors working under closed loop mode can now use the position correction mechanism
to correct the actual position of the stepper. This may be implemented on the MPU using one of
two firmware-based mechanisms or on a controller using the servo processor based method.

10.1.1 StepperClosedLoopFirmwareBased

The firmware-based position correction methods may be implemented on the PDIcl drive interface
hardware. The Full Mode method performs position correction on every cycle during the motion.
End Mode completes the correction at the end of the motion. In both cases, the correction only
takes place if the position is outside the dead zone.

Position Correction is set to Full Mode by setting MFLAGSX=0.

Position Correction is set to End Mode by setting MFLAGSX=1.

The position correction is added to RPOS, as such RPOS turns into an accumulator for all corrections
done for the axis and may inflate to large values – this does not reflect the position itself and
further references to position should be done by FPOS and APOS.

These methods are controlled according to the values of SLSKI, SLSKP, SLSRL, SLSMC, SLSDZ, and
SLSOUT.

The position correction is added to RPOS, so RPOS turns into an accumulator for all corrections done
for the axis and may inflate to large values – this does not reflect the position itself and further
references to position should be done by FPOS and APOS.

10.1.2 StepperClosedLoopServoProcessor

Servo Processor based correction may be implemented on any PWM drive by setting MFLAGSX=2.

The mechanism is controlled according to the values of SLPKP and SLSRL.

363Version 3.02

ACSPL+ Programmer's Guide
10. Servo Tuning

https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/MFLAGSX.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/RPOS.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/FPOS.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/APOS.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/SLSKI.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/SLSKP.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/SLSKP.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/SLSMC.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/SLSDZ.htm
https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_CommandVariable/Document/SLSOUT.htm

11. Errors & Diagnostics
Error detection can occur in three circumstances:

> An erroneous command is received through any communication channel

> An error occurs while the controller executes an ACSPL+ program

> The controller kills a motion or disables a motor because a fault was detected

This chapter provides a description of how error codes are generated. For the complete list of error
codes see SPiiPlus Command & Variable Reference Guide.

11.1 Error Codes

Each error in the controller has a corresponding 4-digit error code. Regardless of how an error is
detected and reported, you can request the error description from the controller. A request for
error description consists of two question marks followed by the error code. For example, the
following communication may occur when the controller is in protected mode:

VEL(0) = 10000 Attempt of assignment to a protected variable.

?2085 The controller reports an error.

??2085 Request for error description.

Protection violation Error description

11.1.1 Error Code Ranges

Table 10-1. SPiiPlus Error Code Ranges

Range Type Description

0 -
999

Errors
detected
by SPiiPlus
C Library

Errors are detected by C Library without communication with the
controller. The controller itself never returns error codes in this
range.

A host application that calls a C Library function can receive this
code if a function call failed.

For explanation of the errors see the SPiiPlus C Library Reference
Guide.

1000 -
1999

Errors in
terminal
commands

Errors in terminal commands are reported immediately in the
prompt that is displayed in response to the command.

364Version 3.02

ACSPL+ Programmer's Guide
11. Errors & Diagnostics

Range Type Description

2000 -
2999

ACSPL+
compilation
errors

ACSPL+ compilation errors are reported either immediately when
the erroneous line is inserted, or subsequently, when the
controller attempts to compile an ACSPL+ program. If a program
in a buffer undergoes compilation and an error is detected, the
error code is stored in the corresponding element of the PERR
array and the erroneous line number is stored in the
corresponding element of the PERL array

3000 -
3999

ACSPL+
termination
codes

Codes from 3000 to 3019 do not indicate an error. For example,
code 3002 reports that the user has terminated the program.

Codes from 3020 to 3999 indicate run-time errors.

If an error occurs in immediate execution of ACSPL+ command,
the error is indicated immediately in the prompt. If an error
occurs when an ACSPL+ program is executed in a buffer, no
immediate indication is provided. Instead, the error code and the
line number are stored in the corresponding elements of the
PERR and PERL arrays.

5000 -
5999

Motion
termination
codes and
motor
disable
codes

Codes from 5000 to 5008 do not indicate an error. They report
normal motion termination.

Codes from 5009 and higher appear when a motion is terminated
or a motor is disabled due to a fault detected by the controller.

When a motion terminates abnormally, or a motor is disabled, the
error code is stored in the MERR variable.

6000
-
6999

EtherCAT
code

Stored in the ECERR variable, and when occurs, sets ECST.#OP to
false.

7000 -
7999

EtherCAT
codes
based on
AL Status
codes

Stored in the ECALERR variable, and a value "0" indicates no error.

>
9000

User-
defined
codes

The user can execute commands KILL, KILLALL, DISABLE,
DISABLEALL with an argument that specifies a user-defined error
code.

The specified error code is stored in the MERR variable.

11.2 Error Indication

11.2.1 Errors in Received Commands

If the controller receives a correct command, it responds with the normal prompt (colon).

365Version 3.02

ACSPL+ Programmer's Guide
11. Errors & Diagnostics

If a command cannot be executed for any reason, the controller responds with the error prompt.
The error prompt contains the “?” character and 4-digit error code. For example:

VEL(0) = 1000

: Normal prompt - the command was successful

FPOS(0) = 0

?2020 Error - attempt of assignment to a read-only variable

11.2.2 Errors inACSPL+ Programs

If the controller executes an ACSPL+ program and an error occurs due to the program, the
controller does the following:

> Aborts the erroneous program

> Stores the error code in the corresponding element of the PERR array

> Stores the line number that caused the error in the corresponding element of the PERL
array

> Activates the #PROG fault. The default controller response to the fault is to kill all executed
motions.

No error prompt is issued. You must analyze the state of the buffer in order to detect program
errors. For example:

?1 Query the state of buffer 1

Buffer 1: 78 lines, run-time error 3077 in line 37

?PERR(1) The state also can be monitored through variable PERR

11.2.3 Motion Termination Codes

A motion executed in the controller can terminate for different reasons:

> The motion comes to its final point - normal termination

> You interrupt the motion with a HALT or KILL command

> The controller detects a fault that requires motion kill

In all cases the controller stores the termination reason in the corresponding element of the AERR
(Axis Error) variable. No error prompt is issued. You have to analyze the state of the axis in order to
detect motion termination. For example:

?$0 Query of the state of axis 0.

Motor 0(X): enabled, idle, in positionAxis 0(X): motion was killed by user

?AERR(0)
The state also can be monitored through the AERR
variable.

366Version 3.02

ACSPL+ Programmer's Guide
11. Errors & Diagnostics

5002 The termination code - motion was killed by user.

?$13 Query of the state of axis 13.

Motor 13(Axis13): enabled, idle, in positionMotor 13(Axis13): motion failed, reason 5011

?AERR(13)
The state also can be monitored through the AERR
variable.

5011 The termination code - Left Limit fault

11.2.4 Motion Termination and Motor Disable Codes

A motion executed in the controller can terminate for the different reasons:

> The motion comes to its final point - normal termination

> You or the ACSPL+ program interrupts the motion with a HALT, KILL, or KILLALL command

> A motor involved in the motion is disabled for any reason

> The controller detects a fault that requires motion kill

The controller disables a motor for the following reasons:

> You or the ACSPL+ program executes a DISABLE or DISABLEALL command

> The controller detects a fault that requires motor disable

If a motor is disabled or a motion is killed due to a fault, the controller stores the reason in the
corresponding element of the MERR (Motor Error) variable.

You can also specify a termination code for commands KILL, KILLALL, DISABLE or DISABLEALL. If one
of the commands is used with a non-zero reason argument, the specified code is stored in one or
more corresponding elements of MERR as a termination/disable code.

In a case where no error prompt is issued, you must analyze the state of the motor in order to
detect whether the motor was disabled or a motion was killed abnormally. For example:

?2 Query of the state of motor 2

Motor 2(Z): disabled Disable reason: 5023 - Critical Position ErrorAxis 2(Z): motion was killed
because a motor was disabled

?MERR(2)
The state also can be monitored through variable
MERR

The error code - motor was disabled because of
critical position error fault

11.2.5 Getting Extended Drive Fault Status

Upon receipt of a Drive Alarm signal, the controller stores a general Drive Alarm code (5019) in the
MERR variable. The extended Drive Fault status code can be obtained by executing the GETCONF
(246, Axis) function (see SPiiPlus Command & Variable Reference Guide).

The following fault codes are returned:

367Version 3.02

ACSPL+ Programmer's Guide
11. Errors & Diagnostics

> 5061 – Short circuit

> 5064 – Power supply too high

> 5065 – Temperature too high

> 5069 – Power down

> 5071 – Drive not ready

> 5072 – Over current

Using the GETCONF function, the faults 5064, 5065, 5069, 5071 can be read before ENABLE
command is executed. In order to clear the Drive Fault status code, use the SETCONF function:
SETCONF(246, Axis, 0). This function clears the fault status on all axes that relate to the DDM3U
Motor Drive that handles the specified axis.

368Version 3.02

ACSPL+ Programmer's Guide
11. Errors & Diagnostics

12. Application Examples
This chapter contains practical examples for use in SPiiPlus applications.

For further examples, registered users may go to www.AcsMotionControl.com and download
pertinent documents (selected from the Categories dropdown list on the page).

12.1 Encoder Error Compensation with Constant Step

Assume an axis was calibrated with a laser interferometer. The calibration process includes
positioning to the points equally spaced according to the encoder feedback, and measuring the
exact positions by the laser interferometer. The calibration points start from the coordinate 10000
and follow each 1000 counts. The last calibration point is 20000.

The calibration produced the following table:

Feed
back

10
00
0

11
00
0

12
0
00

13
0
00

14
00
0

15
0
00

16
00
0

17
0
00

18
00
0

19
00
0

20
00
0

Actu
al

10
01
2

10
99
8

11
9
85

12
9
81

13
99
7

15
0
07

16
01
3

17
02
3

18
00
5

18
99
3

19
99
1

Error
+1
2

-2
-
15

-
19

-3 +7
+1
3

+2
3

+5 -7 -9

Only the third row is entered to a controller variable and is stored in the flash X_ERROR file. Details
of the calibration routine, which can be implemented using ACSPL+, are not discussed here.

An application that uses the file may provide an initialization routine like this:

real X_ERR(11) Declare real array X_ERR with 11 members.

AUTOEXEC: ACSPL+ label initializing the routine on start-up.

WRITE X_ERRREAD X_ERR
Write to and read from the calibration table in the flash
memory.

CONNECT RPOS(0)0 = APOS(0) - MAP (APOS(0), X_ERR, 10000, 1000)

STOP Finish initialization

The CONNECT function specifies that the reference position be calculated by subtracting the
interpolated error from the desired position so that the actual value will be closer to the desired
value.

12.2 Encoder Error Compensation with Arbitrary Step

Assume in the above example that the calibration routine does not calculates an error, but writes
the first two lines from the above table to the X_CALIBR flash file. The table is stored as an array
with 2 rows and 11 columns.

369Version 3.02

ACSPL+ Programmer's Guide
12. Application Examples

http://www.acsmotioncontrol.com/

In this case the application can implement an initialization routine like this:

real X_CAL(2)(11) Declare real 2x11 matrix X_CAL.

AUTOEXEC: ACSPL+ label initializing the routine on start-up.

WRITE X_CALREAD X_CAL Write to and read from calibration table from the flash memory.

CONNECT RPOS(0) = MAPBY2(APOS(0), X_CAL)

STOP Finish initialization

And the X_CALIBR file can also contain a table with non-uniform points.

12.3 Backlash Compensation

Assume that the 0 axis has a backlash of 20 counts. The following CONNECT command compensates
for the backlash:

CONNECT RPOS(0) = APOS(0) + 10*dsign(RVEL(0), 0, 0)

By using this CONNECT, the value added to desired position changes immediately when the
direction of the motion changes. In many cases such jumps in the desired position are harmful. In
this case the third parameter in the DSIGN function (see SPiiPlus Command & Variable Reference
Guide) can be used to gradually implement the backlash compensation. In the following example
the backlash compensation is introduced by small steps, so that the compensation growth to the
entire value by 20 milliseconds:

CONNECT RPOS(0) = APOS(0) + 10*dsign(RVEL(0), 0, 20)

If the 0 axis executes master-slave motion slaved to some physical value like encoder feedback,
the RVEL value contains noise that can cause undesirable switching of the backlash sign. In this case
the second parameter of the DSIGN function can be used to introduce anti-bouncing effect. In the
following example the backlash compensation changes its sign only if RVEL holds its new sign for
more than 10 milliseconds:

CONNECT RPOS(0) = APOS(0) + 10*DSIGN(RVEL(0), 10, 20)

12.4 Compensation of Encoder Error and Backlash

An arbitrary expression can be used as an argument in the design function and in the map-
functions. It ensures combining different compensation function and other required
transformations in one CONNECT command. The following example combines error and backlash
compensations from the above examples:

real X_CAL(2)(11) Declare real 2x11 matrix X_CAL.

AUTOEXEC: ACSPL+ label initializing the routine on start-up.

WRITE X_CALREAD X_CAL
Write to and read from calibration table from the flash
memory.

370Version 3.02

ACSPL+ Programmer's Guide
12. Application Examples

CONNECT RPOS(0) = MAPBY2(APOS(0)+10*DSIGN(RVEL(0), 10, 20), X_CAL)

STOP Finish initialization

12.5 Cam Motion

Assume that the 1 axis must provide a cam motion following the 0 axis. The CAMTABLE matrix in the
nonvolatile (flash) memory contains 2 rows and 1000 columns. Each column contains an X
coordinate (for axis 0) in the first row and the corresponding Y coordinate (for axis 1) in the second
row. The X coordinates in the first row can be spaced either equally or non-equally.

The following fragment initializes the cam motion:

global real CAMTABLE(2)(1000) Declare 2x1000 matrix CAMTABLE.

AUTOEXEC:

WRITE CAMTABLEREAD
CAMTABLE,CAMTABLE

Write to and read from calibration table from the
flash memory.

MASTER MPOS(1) = MAPBY1(FPOS(0),
CAMTABLE)

Define master value via CAMTABLE

SLAVE(1) Start master-slave motion

12.6 Joystick

Assume that a joystick that controls the motion of an X,Y table is connected to analog inputs AIN(0),
AIN(1). The velocity of each coordinate must be proportional to the corresponding analog input.
Analog input lower than 20 counts must be ignored to avoid motion due to analog drift or bias. The
X (axis 0) motion is limited in the range from -500 to 100000 counts. The Y (axis 1) motion is limited
in the range from -500 to 500000 counts.

The following program fragment initializes the joystick motion:

real JK

JK = 10 Joystick factor

MASTER MPOS(0) = INTGR(AIN(0), 20, -500, 100000) Define 0 master

MASTER MPOS(1) = INTGR(AIN(1), 20, -500, 500000) Define 1 master

SLAVE(1) Start master-slave motion

12.7 XYZ Rotation

It is sometimes necessary to rotate the reference plane which motion is commanded in. The basic
rotation matrices can be expressed as:

371Version 3.02

ACSPL+ Programmer's Guide
12. Application Examples

The illustration below shows the rotation of the plane from the original (x, y, z) plane to a rotated
(x’’’, y’’’, z’’’) plane.

Figure 11-1. XYZ Rotation

Rotation of the plane can be expressed as:

Where R is the product of the rotation matrices used to shift the plane, represents the vector

coordinates in the rotated plane, and represents the vector coordinates in the initial plane. For

example, rotation about the Z axis can be expressed as: . The three-dimensional
rotation matrix is expressed as the product of all three individual matrices:

This allows the final plane coordinates to be solved for from the initial plane coordinates. To utilize
this rotation on the ACS controller, it is also necessary to solve this equation such that the initial

plane coordinates are solved for using the final plane coordinates, or . In this

case, can be solved for as:

372Version 3.02

ACSPL+ Programmer's Guide
12. Application Examples

With these equations, it is now possible to utilize the SET and CONNECT equations to establish a
rotated plane on the controller. Consider RPOS of the axes to be the axis positions in the initial
plane, and APOS to be the commanded positions in the rotated plane. It is now possible to use the
CONNECT equation to allow the controller to automatically calculate the actuator positions based on
user commanded positions in the rotated plane. See below for an example of how this is done:

! 3D Rotation using CONNECT
GLOBAL REAL PHI, THETA, PSI
REAL PI
PI = ACOS(-1)
! Set rotation angle about X axis in radians
PHI = 0*(PI/180)
! Set rotation angle about Z axis in radians
THETA = 0*(PI/180)
! Set rotation angle about Z axis in radians
PSI = 0*(PI/180)
! Reset the default connection on each axis
MFLAGS(X).#DEFCON = 1; MFLAGS(Y).#DEFCON = 1; MFLAGS(Z).#DEFCON = 1;
MFLAGS(X).#DEFCON = 0; MFLAGS(Y).#DEFCON = 0; MFLAGS(Z).#DEFCON = 0;
! Forward kinematics
SET APOS(X) = (COS(THETA)*COS(PSI))*RPOS(X) + (COS(PHI)*SIN(PSI)+SIN
(PHI)*SIN(THETA)*COS(PSI))*RPOS(Y) + (SIN(PHI)*SIN(PSI)-COS(PHI)*SIN
(THETA)*COS(PHI))*RPOS(Z)
SET APOS(Y) = (-COS(THETA)*SIN(PSI))*RPOS(X) + (COS(PHI)*COS(PSI)-SIN
(PHI)*SIN(THETA)*SIN(PSI))*RPOS(Y) + (SIN(PHI)*COS(PSI)+COS(PHI)*SIN
(THETA)*SIN(PSI))*RPOS(Z)
SET APOS(Z) = (SIN(THETA))*RPOS(X) + (-SIN(PHI)*COS(THETA))*RPOS(Y) +
(COS(PHI)*COS(THETA))*RPOS(Z)
! Inverse kinematics
CONNECT RPOS(X) = (COS(THETA)*COS(PSI))*APOS(X) + (-COS(THETA)*SIN
(PSI))*APOS(Y) + (SIN(THETA))*APOS(Z)
CONNECT RPOS(Y) = (COS(PHI)*SIN(PSI)+SIN(PHI)*SIN(THETA)*COS(PSI))*APOS
(X) + (COS(PHI)*COS(PSI)-SIN(PHI)*SIN(THETA)*SIN(PHI))*APOS(Y) + (-SIN
(PHI)*COS(THETA))*APOS(Z)
CONNECT RPOS(Z) = (SIN(PHI)*SIN(PSI)-COS(PHI)*SIN(THETA)*COS(PSI))*APOS
(X) + (SIN(PHI)*COS(PSI)+COS(PHI)*SIN(THETA)*SIN(PSI))*APOS(Y) + (COS
(PHI)*COS(THETA))*APOS(Z)
DEPENDS X,(X,Y,Z)
DEPENDS Y,(X,Y,Z)
DEPENDS Z,(X,Y,Z)
STOP

373Version 3.02

ACSPL+ Programmer's Guide
12. Application Examples

Contact us: sales@acsmotioncontrol.com | www.acsmotioncontrol.com

5 HaTnufa St.
Yokneam Illit 2066717
Israel
Tel: (+972) (4) 654 6440 Fax: (+972) (4) 654 6443

	1. Introduction
	1.1 ACSPL+ Programming Language

	2. SPiiPlus Architecture
	2.1 Hardware Structure
	2.1.1 Firmware
	2.1.2 Controller Cycle and Servo Tick
	2.1.3 Realtime and Background Tasks

	2.2 User Application
	2.2.1 Firmware, User Application and Tools
	2.2.2 User Application Components
	2.2.3 User Applications Categories
	2.2.4 SPiiPlus MMI Application Studio
	2.2.5 File Extensions Used in SPiiPlus MMI Application Studio

	2.3 Programming Resources
	2.3.1 Commands
	2.3.2 Program Buffers
	2.3.2.1 ACSPL+ Buffers Compilation Behavior

	2.3.3 Declaration Buffer (D-Buffer)
	2.3.3.1 Defining Global Objects in D-Buffer
	2.3.3.2 D-Buffer Default Contents

	2.3.4 Command Execution
	2.3.4.1 Terminal Commands
	2.3.4.2 ACSPL+ Commands

	2.3.5 ACSPL+ Standard Variables
	2.3.6 User-Defined Variables
	2.3.7 Nonvolatile Memory and Power Up Process

	2.4 Executing ACSPL+ Programs
	2.4.1 Program Buffers
	2.4.2 Execution of a Single Program
	2.4.3 Concurrent Execution
	2.4.4 Immediate Execution
	2.4.5 Immediate Execution vs. Stored Program
	2.4.6 Autoroutine Execution
	2.4.7 Synchronization and Mutual Exclusion
	2.4.7.1 Mutual Exclusion
	2.4.7.2 Synchronization
	2.4.7.3 Execution Rate

	3. ACSPL+ Overview
	3.1 ACSPL+ Syntax
	3.1.1 Commands, Lines, and Command Aggregates
	3.1.2 BLOCK..END Control Structure
	3.1.3 ACSPL+ Reserved Words
	3.1.4 Names: Variable and Label
	3.1.5 Case Sensitivity
	3.1.6 Axis Designations
	3.1.7 Comments

	3.2 Variables
	3.2.1 Variable Name
	3.2.2 Variable Class: ACSPL+ or User
	3.2.3 Variable Scope
	3.2.3.1 Global Variable Scope
	3.2.3.2 Local Variable Scope

	3.2.4 Variable Lifetime
	3.2.5 Variable Accessibility
	3.2.6 Variable Type: Integer and Real
	3.2.7 Variable Size
	3.2.8 Variable Value

	3.3 Variable Declaration
	3.3.1 Declaration of Global Variables
	3.3.2 Persistent Global Variables

	3.4 Arrays and Indexing
	3.4.1 Scalars and Arrays
	3.4.2 ACSPL+ Array Variables
	3.4.3 Explicit Indexing
	3.4.4 Postfix Indexing of Standard Arrays
	3.4.5 Axis Indexing
	3.4.6 User-Defined Axis Names
	3.4.6.1 Axis Name as Symbolic Constant
	3.4.6.2 Axis Name in Indexing
	3.4.6.3 Axis Specification in Commands

	3.4.7 Array Processing Functions

	3.5 ACSPL+ Composite Data Structures
	3.5.1 Introduction
	3.5.2 STRUCT Type Definition
	3.5.3 Fields
	3.5.4 STRUCT type variable definition and use
	3.5.4.1 Variable definition
	3.5.4.2 Variable initialization
	3.5.4.3 Expressions Using STRUCTs

	3.5.5 STRUCT Functions
	3.5.5.1 Function Definition
	3.5.5.2 STRUCT Function Parameters
	3.5.5.3 Function Variables Definition

	3.6 Using Variables
	3.6.1 Querying Variables
	3.6.2 Variables as Operands in Expressions
	3.6.3 Variables as Arguments in Command or Function
	3.6.4 Variables in ACSPL+ Terminal Commands
	3.6.5 Accessing Variables by Tags
	3.6.5.1 Variable Tags
	3.6.5.2 GETVAR and SETVAR Functions

	3.7 ACSPL+ Functions
	3.8 ACSPL + User-Defined Functions with Parameters
	3.8.1 Introduction
	3.8.2 Function definition
	3.8.2.1 Function Signature
	3.8.2.2 FASTCALL Functions
	3.8.2.3 Function visibility scope
	3.8.2.3.1 Local function
	3.8.2.3.2 Global function
	3.8.2.3.3 Function Declaration

	3.8.2.4 Function Code

	3.8.3 Function Parameters
	3.8.3.1 Value Types
	3.8.3.2 Reference types
	3.8.3.3 Composite Data Type Parameters
	3.8.3.4 Array Type Parameters
	3.8.3.4.1 Single Dimension Array
	3.8.3.4.2 Two Dimensional Array

	3.8.4 Variable Definition
	3.8.5 Return value
	3.8.6 DISP command
	3.8.7 Stack Memory
	3.8.8 Function Execution Time
	3.8.9 FILL function

	3.9 Expressions
	3.9.1 General
	3.9.2 Calculation Order
	3.9.3 Expression Type
	3.9.4 Operands
	3.9.4.1 Arithmetical Operators
	3.9.4.2 Compare Operators
	3.9.4.3 Bitwise and Logical Operators
	3.9.4.4 Unary Operators
	3.9.4.5 Bit Selection Operator (Dot)

	3.9.5 Character Constants

	3.10 ACSPL+ Commands
	3.10.1 Assignment Command
	3.10.1.1 ACSPL+ Variable Assignment
	3.10.1.2 User Variable Assignment
	3.10.1.3 Bit Assignment
	3.10.1.4 Type Conversion

	3.10.2 Synchronization Commands
	3.10.2.1 WAIT Command
	3.10.2.2 TILL Command

	3.10.3 Autoroutines
	3.10.3.1 ON Command
	3.10.3.2 Autoroutine Body and Execution
	3.10.3.3 Autoroutine and the Host Buffer Interactions
	3.10.3.4 Examples

	3.10.4 Program Management Commands
	3.10.4.1 START Command
	3.10.4.2 STOP and STOPALL Commands
	3.10.4.3 PAUSE and RESUME Commands
	3.10.4.4 ENABLEON and DISABLEON Commands

	4. ACSPL+ Motion Programming
	4.1 Axis/Motor Management Commands
	4.1.1 ENABLE & DISABLE Commands
	4.1.2 COMMUT Command
	4.1.3 KILL and KILLALL Commands
	4.1.4 FCLEAR Command
	4.1.5 SET Command
	4.1.6 GROUP, SPLIT & SPLITALL Commands
	4.1.7 GO Command
	4.1.8 HALT Command
	4.1.9 BREAK Command
	4.1.10 IMM Command

	4.2 Point-to-Point Motion
	4.2.1 PTP Command
	4.2.2 MPTP, POINT, MPOINT, and ENDS Commands
	4.2.2.1 MPTP Command
	4.2.2.2 POINT Command
	4.2.2.3 MPOINT Command

	4.2.3 The GRTIME Variable
	4.2.4 Modulo Axis
	4.2.5 Motion Boost
	4.2.5.1 20 kHz Motion
	4.2.5.2 BPTP
	4.2.5.3 BPTPCalc

	4.3 JOG Command
	4.4 TRACK Command
	4.5 Segmented Motion
	4.5.1 Understanding Slaved Segmented Motion
	4.5.2 MSEG, LINE, ARC1, ARC2, STOPPER Commands
	4.5.3 PROJECTION Command
	4.5.4 Arguments as Expression
	4.5.5 STOPPER Command
	4.5.6 Cyclic Motion
	4.5.7 Slaved Motion at Extreme Points

	4.6 Extended Segmented Motion (XSEG)
	4.6.1 Corner Processing
	4.6.1.1 Corner Detection
	4.6.1.2 Supported Options

	4.6.2 Automatic Corner Processing
	4.6.3 Enhanced automatic corner and curvature discontinuity points processing (switch/y)
	4.6.4 Velocity Control and Look-ahead Algorithm
	4.6.5 Corners and Curvature Discontinuity Points
	4.6.6 Dynamic Velocity Profile Generation
	4.6.7 Controller Usage Considerations
	4.6.8 Approaches for Adding Segments
	4.6.8.1 Adding Segments In Advance
	4.6.8.2 Adding Segments Only When Requested

	4.6.9 Secondary Axes
	4.6.9.1 Secondary Axes Functionality
	4.6.9.2 Using Secondary Axes in XSEG
	4.6.9.3 Secondary Axes in ARC1, ARC2, LINE

	4.6.10 Supported Motion Parameters
	4.6.11 Non Supported Motion Parameters
	4.6.12 XSEG...ENDS
	4.6.13 ARC1
	4.6.14 ARC2
	4.6.15 LINE
	4.6.16 Using ARC1, ARC2 and LINE Switches
	4.6.17 Examples
	4.6.17.1 Simple Two Axes Example
	4.6.17.2 Simple Four Axes Example

	4.6.18 New AST Bits
	4.6.19 The IMM Command
	4.6.20 XSEGAMIN and XSEGAMAX
	4.6.21 XSEGRMIN and XSEGRMAX

	4.7 Blended Segmented Motion
	4.7.1 Motion definition through time intervals
	4.7.2 Motion blending
	4.7.2.1 Motion blending in special cases

	4.7.3 ACSPL+ interface
	4.7.3.1 Supported motion parameters
	4.7.3.2 Non-supported motion parameters
	4.7.3.3 BSEG command
	4.7.3.4 LINE
	4.7.3.5 ARC1
	4.7.3.6 ARC2
	4.7.3.7 Suffixes with commands LINE, ARC1, ARC2
	4.7.3.8 HALT execution

	4.7.4 Two axes example

	4.8 Master/Slave Motion
	4.8.1 MASTER Command
	4.8.2 SLAVE Command
	4.8.2.1 Synchronization
	4.8.2.2 Velocity Lock vs. Position Lock
	4.8.2.3 Stalled Motion

	4.9 PATH Command
	4.10 Spline Motion
	4.10.1 Spline Motion Theory
	4.10.2 Main Definitions
	4.10.3 PVSPLINE Command
	4.10.3.1 POINT Command
	4.10.3.2 MPOINT Command

	4.10.4 Spline Motion Variables

	4.11 Open-Loop Operation (Torque Control)
	4.12 Step Velocity Profile (Non-Zero Minimal Velocity)
	4.12.1 The NVEL Variable
	4.12.2 Special NVEL Cases
	4.12.2.1 Specified Velocity Less Than NVEL
	4.12.2.2 Multi-Axis Motion
	4.12.2.3 NVEL and Non-Default Connection

	5. Inputs and Outputs
	5.1 Digital Inputs and Outputs
	5.1.1 Addressing Digital I/Os
	5.1.2 Querying Digital I/Os
	5.1.3 Assigning Outputs
	5.1.4 Digital I/O in Conditional Commands
	5.1.5 PLC Implementation
	5.1.6 Digital I/O in Autoroutines
	5.1.7 Using HSSI I/O Extension
	5.1.8 SPI Communication
	5.1.8.1 ACSPL+ Commands and Variables for SPI
	5.1.8.1.1 SPICFG
	5.1.8.1.2 SPIRXN
	5.1.8.1.3 EXTIN
	5.1.8.1.4 EXTOUT

	5.2 Analog Inputs and Outputs
	5.2.1 Addressing Analog I/Os
	5.2.2 Assigning Analog Outputs

	6. Fault Handling
	6.1 Safety Control
	6.1.1 Types of Malfunctions
	6.1.2 How the Controller Detects Malfunctions
	6.1.3 Faults
	6.1.3.1 The FAULT Variable
	6.1.3.2 The S_FAULT Variable

	6.1.4 Controller Response

	6.2 Safety Control Summaries
	6.2.1 Summary of Faults and Default Responses
	6.2.2 Summary of Safety Inputs
	6.2.3 Summary of Safety-Related Variables
	6.2.4 Integrity Control
	6.2.4.1 Integrity Violation Fault
	6.2.4.2 Integrity Report Command

	6.2.5 Report of Realtime Usage Command
	6.2.6 Application Protection
	6.2.6.1 Protected Features
	6.2.6.2 Enhanced Application Protection
	6.2.6.3 CFG Variable
	6.2.6.4 Protection of Variables
	6.2.6.5 Protection of ACSPL+ Programs
	6.2.6.6 Privileged Buffer
	6.2.6.7 Communication Shutdown

	6.2.7 Report Safety Configuration

	6.3 Working with Faults
	6.3.1 Addressing the Fault Bits
	6.3.2 Querying Faults
	6.3.3 Using the Fault Bits in if, while, till Commands
	6.3.4 Creating Fault-Processing Autoroutines
	6.3.5 Disabling Fault Processing
	6.3.6 Defining the Active Level of Safety Input
	6.3.7 Fault Processing Modes

	6.4 Network Faults
	6.4.1 Axis Network-Related Faults
	6.4.2 Initialization Failure
	6.4.3 Network Failure During Operation
	6.4.4 SP Software Failure

	6.5 Detailed Description of Faults
	6.5.1 Limit Switches: #LL, #RL
	6.5.2 Network Fault: #NT
	6.5.3 Software Limit Switches: #SLL, #SRL
	6.5.4 Non-Critical Position Error: #PE
	6.5.5 Critical Position Error: #CPE
	6.5.6 Encoder Error: #ENC, #ENC2
	6.5.7 Encoder Not Connected: #ENCNC, #ENC2NC
	6.5.8 Drive Alarm: #DRIVE
	6.5.9 Motor Overheat: #HOT
	6.5.10 Velocity Limit: #VL
	6.5.11 Acceleration Limit: #AL
	6.5.12 Current Limit: #CL
	6.5.13 Servo Processor Alarm: #SP
	6.5.14 HSSI Not Connected: #HSSINC
	6.5.15 Emergency Stop: #ES
	6.5.16 Program Error: #PROG
	6.5.17 Memory Overflow: #MEM
	6.5.18 Time Overuse: #TIME
	6.5.19 Servo Interrupt: #INT
	6.5.20 Component Failure Faults: #FAILURE
	6.5.20.1 Safety Variables
	6.5.20.2 Component Failure Fault Handling in ACSPL+

	6.6 Detailed Description of Safety Controls
	6.6.1 Examining Fault Conditions - Flow Chart
	6.6.2 Examining Motor Fault Conditions
	6.6.3 Examining System Fault Conditions

	6.7 Extended Fault Configuration

	7. Connection to the Plant
	7.1 General Diagram
	7.2 User-Defined Units
	7.3 Direct and Feedback Transform
	7.4 Index and Mark Values
	7.5 Safety Inputs
	7.6 Digital Inputs/Outputs Repetitive
	7.7 Analog Inputs/Outputs
	7.8 High-Speed Synchronous Serial Interface

	8. Advanced Features
	8.1 Data Collection
	8.1.1 DC Command
	8.1.2 SPDC - High-Speed Data Collection
	8.1.3 ACSPL+ Variables Involved in Data Collection
	8.1.4 Understanding System Data Collection
	8.1.5 Axis Data Collection
	8.1.6 STOPDC Command

	8.2 PEG Overview
	8.2.1 PEG Modes and Operation
	8.2.1.1 Incremental PEG Mode of Operation
	8.2.1.1.1 Incremental PEG Commands
	8.2.1.1.2 Running Incremental PEG

	8.2.1.2 Random PEG Mode of Operation
	8.2.1.2.1 Random PEG Commands
	8.2.1.2.2 Running Random PEG
	8.2.1.2.3 Time-Based PEG Support
	8.2.1.2.4 Loading Random PEG Arrays
	8.2.1.2.5 SPiiPlusCM / SPiiPlusSA / SPiiPlus3U PEG Compatibility

	8.2.1.3 PEG Commands
	8.2.1.3.1 PEG Output Mapping
	8.2.1.3.2 ASSIGNPEG
	8.2.1.3.3 ASSIGNPOUTS
	8.2.1.3.4 STARTPEG
	8.2.1.3.5 STOPPEG
	8.2.1.3.6 PEG_I
	8.2.1.3.7 PEG_R
	8.2.1.3.8 ASSIGNMARK

	8.2.1.4 ACSPL Plus Functions and Definitions
	8.2.1.4.1 GETCONF
	8.2.1.4.2 AST.#PEGREADY

	8.3 Sin-Cos Encoder Multiplier Configuration
	8.3.1 Sin-Cos Encoder Multiplier
	8.3.1.1 Technical Data
	8.3.1.2 Configuring the Sin-Cos Multiplier

	8.4 Interrupts
	8.4.1 Hardware Interrupts
	8.4.2 Software Interrupts
	8.4.3 Software Interrupt Tags
	8.4.4 Interrupt Configuration Variables
	8.4.4.1 IENA Variable
	8.4.4.2 ISENA Variable

	8.5 Dynamic Braking
	8.6 Constant Current Mode
	8.7 Hall Sensor Commutation
	8.8 Communicating with the SPiiPlus C Library
	8.8.1 Remote Connection
	8.8.2 Callbacks in all Communication Channels
	8.8.2.1 Timing
	8.8.2.2 Software Interrupts
	8.8.2.3 Hardware Interrupts

	8.8.3 TCP/IP Port Assignment for Remote Connection
	8.8.3.1 TCP/IP Port Assignmnet
	8.8.3.2 Disabling Remote UMD Connections
	8.8.3.3 UMD Log Types
	8.8.3.4 Unloading the UMD from Memory

	8.9 Communicating with Non-ACS Devices
	8.9.1 Channel Configuration Report
	8.9.2 Assigning COM Channel for Special Input
	8.9.3 Setting Communication Parameters
	8.9.4 Parity, Stop Bit
	8.9.5 INP Function
	8.9.6 String Handling Commands
	8.9.6.1 DISP Command
	8.9.6.2 SEND Command
	8.9.6.3 Differences between Query Commands and the DISP/SEND Commands
	8.9.6.4 STR Function
	8.9.6.5 DSTR Function

	8.10 TRIGGER Command
	8.11 Dynamic TCP/IP Addressing
	8.11.1 TCP/IP Variable
	8.11.2 Using GETCONF/SETCONF to Access TCP/IP Address
	8.11.3 Addressing Scenarios

	8.12 Non-Default Connections
	8.12.1 ROFFS Variable
	8.12.2 DAPOS Variable
	8.12.3 CONNECT Command
	8.12.4 DEPENDS Command
	8.12.5 MATCH Function

	8.13 Input Shaping
	8.13.1 INSHAPEON
	8.13.2 INSHAPEOFF
	8.13.3 AST
	8.13.4 APOSFILT
	8.13.5 Using the Convolve Web Site
	8.13.6 Data Entry Dialog

	8.14 DRA Algorithm
	8.15 BI-Quad Filter
	8.16 Feedback Routing
	8.17 Voltage Mode

	9. Generic EtherCAT Master
	9.1 Stack Behavior
	9.2 Interface Description
	9.2.1 ACSPL+ Variables
	9.2.1.1 ECST - EtherCAT State
	9.2.1.2 ECERR
	9.2.1.3 #ETHERCAT

	9.3 EtherCAT Functions
	9.3.1 Mapping Functions
	9.3.1.1 ECIN
	9.3.1.2 ECOUT
	9.3.1.3 ECUNMAP
	9.3.1.4 ECCLRREG
	9.3.1.5 ECGETREG
	9.3.1.6 ECGETSLAVES
	9.3.1.7 ECUNMAPIN
	9.3.1.8 ECUNMAPOUT

	9.3.2 CoE Functions
	9.3.2.1 COEWRITE
	9.3.2.2 COEREAD

	10. Servo Tuning
	10.1 Stepper Closed-loop Position Correction
	10.1.1 StepperClosedLoopFirmwareBased
	10.1.2 StepperClosedLoopServoProcessor

	11. Errors & Diagnostics
	11.1 Error Codes
	11.1.1 Error Code Ranges

	11.2 Error Indication
	11.2.1 Errors in Received Commands
	11.2.2 Errors in ACSPL+ Programs
	11.2.3 Motion Termination Codes
	11.2.4 Motion Termination and Motor Disable Codes
	11.2.5 Getting Extended Drive Fault Status

	12. Application Examples
	12.1 Encoder Error Compensation with Constant Step
	12.2 Encoder Error Compensation with Arbitrary Step
	12.3 Backlash Compensation
	12.4 Compensation of Encoder Error and Backlash
	12.5 Cam Motion
	12.6 Joystick
	12.7 XYZ Rotation

